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PREFACE 

THOSE  who  have  had  experience  in  teaching  elementary 

dynamics  to  students  of  Engineering  will  agree  that  the 

majority  find  considerable  difficulty  in  grasping  the  fundamental 

principles  on  which  the  subject  is  based.  There  are  new  physical 

quantities  to  be  understood,  and  new  principles  to  be  accepted 

which  can  only  be  expressed  in  terms  of  these  quantities.  Un- 
fortunately, in  many  cases,  this  subject  has  to  be  introduced  at  a 

stage  of  development  in  mathematics  at  which  the  student  expects 

some  proof  of  what  he  is  told  to  believe.  He  is  not  so  prepared 

to  accept  things  without  proof  as  he  was  when  first  told  that 

2x3  =  6.  Even  at  that  early  stage,  probably  an  attempt  was 

made  to  prove  to  him  that  2x3  =  6,  yet,  in  the  end,  he  merely 
accepted  the  fact  and  memorised  it. 

The  author  believes  that  the  difficulty  experienced  is  partly, 

though  by  no  means  entirely,  due  to  the  way  the  subject  is  often 

presented.  In  the  student's  mind  it  is  associated  with  branches 
of  pure  mathematics  such  as  trigonometry,  analytical  geometry, 
or  infinitesimal  calculus,  and  he  is  inclined  to  think  that  salvation 

lies  in  memorising  a  number  of  formulae  which  are  to  be  used  in 

solving  problems,  instead  of  looking  upon  dynamics  as  a  funda- 
mental branch  of  physical  science,  in  which  mathematics  is  of 

secondary  importance  and  the  physical  ideas  of  primary  import- 

ance. Quite  commonly  in  elementary  text-books,  the  second  law 
of  motion  is  at  first  summed  up  in  the  form,  force  =  mass  x  ac- 

celeration, and  the  student  is  then  given  a  number  of  examples 

to  work  out,  most  of  which  consist  in  substituting  numbers  in  a 

formula.  This  very  successfully  disguises  the  true  meaning  of 

momentum,  and  the  extraordinary  generality  of  the  second  law 

of  motion.  The  same  applies  to  problems  dealing  with  motion. 

The  student  is  generally  presented  with  certain  formulae  for 
motion  involving  a  constant  acceleration.    These  formulae,  are  of 
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very  little,  if  any,  use  to  him  later  on,  and  have  merely  enabled 

him  to  get  answers  to  certain  problems  without  thinking. 

At  first  sight  the  remedy  would  appear  to  lie  in  teaching 

dynamics  experimentally,  but  the  author's  experience  is  that  this 
is  not  so  for  the  majority  of  students.  The  phenomena  of  every- 

day life  provide  innumerable  qualitative  experiments,  and  to 

most  students  quantitative  laboratory  experiments  in  dynamics 

are  neither  interesting  nor  convincing. 

In  the  following  pages  an  attempt  has  been  made  to  present  the 

principles  of  elementary  dynamics,  and  to  explain  the  meaning 

of  the  phj^sical  quantities  involved,  partly  by  definition  and 
description,  but  mainly  by  worked  examples  in  vyhich  formulae 

have  been  avoided  as  far  as  possible.  By  continually  having  to 

think  of  the  principle  and  the  physical  quantities  involved,  the 

student  gradually  acquires  the  true  meaning  of  them,  and  they 
become  real  to  him. 

It  will  be  observed  that  the  first  of  Newton's  Laws  of  Motion 
is  expressed  in  a  somewhat  different  form  from  that  in  which  it 

is  usually  given,  and  the  laws  are  called  the  Laws  of  Momentum. 

In  working  examples  the  absolute  unit  of  force  has  generally 

been  adopted,  and,  where  applicable,  the  answers  have  been 

reduced  to  units  of  weight.  It  matters  little,  in  the  author's 
opinion,  whether  absolute  or  gravitation  units  are  used,  so  long 

as  mass  is  not  defined  as  weight  divided  by  the  acceleration  due 

to  gravity.  To  say  that  the  engineer's  unit  of  mass  is  32*2  lbs. 
is  almost  to  suggest  that  he  is  rather  lacking  in  intelligence, 

and  cannot  be  expected  to  understand  the  difference  between 

equality  and  proportionality.  If  weight  is  introduced  in  the  early 

conception  of  mass,  the  student's  conception  of  mass  is  extremely 
vague,  and  his  conception  of  momentum  as  a  physical  quantity  is 

even  more  vague  or  erroneous.  A  student  who  cannot  understand 

the  difference  in  the  two  units  of  force,  and  who  has  merely  to  rely 

on  formulae  expressed  in  one  particular  set  of  units,  is  not  likely 

to  get  any  knowledge  of  dynamics  which  will  be  of  real  use  to  him. 
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A  number  of  graphical  examples  have  been  worked  out  in  the 

text,  and  a  number  are  included  in  the  examples  to  be  worked 

by  the  student.  These  frequently  require  more  time  than  analytical 

examples,  but  they  are  more  useful  and  instructive.  This  is  par- 
ticularly the  case  with  the  engineer,  who  is  so  frequently  faced 

with  problems  which  can  only  be  solved  graphically. 

Probably  the  majority  of  students  will  be  learning  differential 

and  integral  calculus  at  the  same  time  as  dynamics,  and  they 

should  be  encouraged  to  use  the  calculus  in  working  examples, 

although  all  the  examples  given  can  be  worked  without  its  use. 

The  examples  at  the  ends  of  the  chapters  are  arranged  more 

or  less  to  follow  the  text,  and  students  should  work  them  as  they 

proceed  with  the  reading,  and  not  wait  until  they  have  completed 

the  chapter.  The  miscellaneous  examples,  at  the  end  of  the  book, 

are  intended  for  revision,  and  for  this  reason  they  are  not  arranged 
either  in  order  of  difficulty  or  in  the  order  of  the  chapters  dealing 

with  the  principles  involved.  The  answers  have  mostly  been 

obtained  by  means  of  a  slide  rule.  It  is  hoped  that  the  errors  in 
them  are  not  numerous. 

Though  primarily  written  for  engineering  students  the  book 

may  be  useful  to  some  others.  The  course  covered  is  approxi- 
mately that  required  for  the  Qualifying  Examination  which 

Cambridge  students  have  to  pass  before  their  second  year,  if 

they  wish  to  take  an  honours  degree  in  Engineering. 

The  author  wishes  to  thank  Mr  J.  B.  Peace,  Fellow  of  Emmanuel 

College,  for  valuable  suggestions  and  for  having  contributed  a 

large  number  of  examples,  also  Mr  W.  de  L.  Winter  of  Trinity 

College  for  very  kindly  reading  the  proofs  and  for  useful  criticism 
and  suggestions. 

J.  W.  LANDON. 

Cambridge, 

August  1920. 
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CHAPTER  I 

Introductory 

The  subject  commonly  called  Dynamics  is  a  part  of  the  much 

bigger  subject  called  Mechanics.  In  its  broadest  aspect,  me- 
chanics deals  with  bodies  or  parts  of  bodies  which  are  acted  upon 

by  certain  forces,  and  analyses  and  examines  the  effect  of  these 

forces  in  producing  motion,  or  in  maintaining  a  state  of  rest. 

For  the  present  purpose  mechanics  may  conveniently  be  divided 
into  three  branches  as  follows  : 

Kinematics 

/ 

I Mechanics- Kinetics 

.Statics 

Kinematics  is  the  branch  of  the  subject  which  deals  with  the 

motions  of  bodies.  The  bodies  may  be  of  any  size  or  shape,  and 

at  times  it  may  be  convenient  to  consider  them  indefinitely  small, 
i.e.  as  points. 

Kinetics  deals  with  the  causes  of  the  motions  of  bodies,  and 

attempts  to  find  a  definite  relationship  between  these  causes 

producing  or  maintaining  motion,  and  the  motions  themselves. 
Statics  treats  of  bodies  which  are  at  rest  and  examines  how 

this  state  may  be  maintained. 

The  subject  of  dynamics,  as  will  be  seen,  does  not  in  itself  form 

one  of  the  main  branches  of  mechanics,  but  it  may  be  said  gene- 
rally to  include  kinetics  and  a  part  of  kinematics.  It  deals  with 

motions  in  so  far  as  they  are  required  in  the  examination  of  the 

forces  producing  them,  and  it  also  deals  with  the  general  con- 
sideration of  the  mechanical  energy  possessed  by  bodies,  either  in 

virtue  of  their  position  or  of  their  motion. 

Now  there  are  certain  fundamental  conceptions,  and  there  are 
also  certain  principles  or  laws,  which  form  the  basis  of  the  whole 

subject.    Neither  the  conceptions  nor  the  laws  are  numerous. 

L.  B.  D.  1 
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Fundamental  Conceptions 

These  consist  of  the  ideas  of  space,  mass  and  time.  It  would 

be  difficult,  if  not  impossible,  to  define  accurately  either  of  these, 

or  to  explain  exactly  how  the  human  mind  understands  their 

meaning.  The  conceptions  are  acquired  in  childhood  or  are 

born  in  us.  Space,  mass,  and  time  are  the  three  fundamental 

physical  quantities,  and  all  the  other  physical  quantities  we  shall 

deal  with  may  be  defined  in  terms  of  them.  It  is  easy  to  realise 
that  before  much  practical  use  can  be  made  of  these,  we  must 

decide  on  some  unit  of  measurement  of  them.  We  shall  here  only 

concern  ourselves  with  two  systems  of  units  : 

(1)  Foot,  Pound,  Second  system,    (f.p.s.) 

(2)  Centimetre,  Gram,  Second  system,    (c.g.s.) 

Space.  We  may  say  that  this  is  what  possesses  length,  breadth 

and  thickness.  Each  of  these  is  a  length  and  hence  space  is  most 

conveniently  measured  in  units  of  length. 

In  the  F.p.s.  system  the  unit  of  length  is  the  foot. 

In  the  C.G.S.  system  the  unit  of  length  is  the  centimetre. 

1  foot  =  30 '5  centimetres. 

Mass.  This  may  be  defined  as  the  quantity  of  matter  or  the 

quantity  of  stuflT  in  a  body.  Although  it  is  difficult  to  define  pre- 
cisely what  is  meant  by  mass,  we  have  no  difficulty  in  realising 

what  we  understand  by  the  term.  If,  for  example,  we  ask  for 

half  a  pound  of  tobacco,  we  are  not  probably  interested  in  the 

amount  of  space  it  occupies,  or  even  its  weight,  so  long  as  we  get 

the  correct  quantity  of  stuflf.  It  may  be  compressed  in  the  form 
of  a  cake  and  occupy  little  volume,  or  it  may  be  loose  and  occupy 
a  considerable  volume.  We  shall  see  later  how  we  can  compare 

masses.  Probably  our  earliest  conception  of  mass  in  childhood  is 

when  we  try  to  throw  things  about.  We  find  that  some  are  more 

difficult  to  move  or  throw  than  others,  and  we  soon  discover 

that   this  does   not  depend  upon   the  size.    We  consider  that 



I 

FUNDAMENTAL  CONCEPTIONS  3 

those  which  are  more  difficult  to  throw  or  move  have  more  stuff 
in  them. 

In  the  P.p.s.  system  the  unit  of  mass  is  the  pound  (1  lb.).  The 
standard  pound  is  a  particular  lump  of  platinum  deposited  in  the 

Exchequer  Office. 

In  the  C.G.S.  system,  the  unit  of  mass  is  the  gram.  Originally 
this  was  intended  to  be  the  mass  of  a  cubic  centimetre  of  pure 
water  at  4  degrees  centigrade,  but  the  standard  is  now  one  of 

platinum  like  that  of  the  pound. 

1  pound  =  453-6  grams. 

In  dealing  with  mass  we  might  conveniently  define  what  is 

meant  by  density.    The  density  of  a  substance  is  the  mass  per 
unit  volume. 

This  should  not  be  confused  with  specific  gravity.  The 

specific  gravity  of  a  substance  is  the  ratio  of  the  mass  of  a  given 
volume  of  the  substance  to  the  mass  of  an  equal  volume  of  water. 
For  example: 

The  density  of  water  =  62*3  lbs.  per  cubic  foot. 

The  specific  gravity  of  steel  =  7-78. 

.-.  The  density  of  steel  =-  7-78  x  62*3 
=  485  lbs.  per  cubic  foot. 

Time.    The  unit  of  time  which  is  adopted  in  both  systems  of 
units  is  the  second. 

Vectors 

The  various  physical  quantities  which  we  have  to  deal  with 
can  be  divided  into  two  classes  : 

(1)  Scalar  quantities. 

(2)  Vector  quantities. 

A  scalar  quantity  is  one  which  possesses  magnitude  only,  for 
example,  an  interval  of  time,  as  3  seconds.    There  is  here  no  idea 

1—2 
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of  direction.    Again,  2  lbs.  of  bread.    This  is  merely  a  definite 

quantity  of  stuff  and  has  no  connection  with  direction. 

In  dealing  with  scalar  quantities  we  add  and  subtract  by  the 

ordinary  rules  of  arithmetic.  For  example,  in  making  a  certain 

article  in  a  workshop,  work  may  have  to  be  done  on  it  in  three 

different  machines,  and  the  lengths  of  time  in  these  may  be 
15  minutes,  40  minutes,  and  10  minutes.  The  total  time  for 

machining  is  then,  (15  +  40  +  10)  =  65  minutes. 

A  vector  quantity  is  one  which  possesses  both  magnitude  and 

direction^  for  example,  the  weight  of  a  body.  We  know  that  this 

acts  vertically  downwards,  and  that  it  is  generally  easier  to  push 

an  object  along  than  to  raise  it  up. 

Suppose  we  are  dealing  with  the  displacement  of  a  body  from 
a  given  position.  Here  we  want  to  know,  not  only  how  far  the 

body  is  from  its  original  position,  but  also  in  what  direction  this 
distance  is.    Let  us  take  an  actual  example. 

A  ship  travels  2  miles  due  east^  and  then  travels  1^  miles  in  a 

direction  north-east.     What  is  the  final  displacement  of  the  ship  ? 

The  easiest  wa)^  to  solve  this  is  to  draw  a  diagram  representing 
the  motion  of  the  ship.  Draw 

OA  due  east  to  represent  the 

2  miles  displacement.  Make  it 

1  inch  long.  Now  draw  AB  in 

a  direction  north-east,  and  make 

it  j  inch  long  to  represent  IJ 
miles  displacement. 

The  final  position  of  the  ship  is  obviously  represented  by  the 

point  B,  and  the  displacement  from  the  starting-point  is  given  by 
OB,  both  in  magnitude  and  direction.  By  measuring  we  find  OB 

is  1-62  inches,  and  we  find  also  that  the  angle  BOA  is  19  degrees 
9  minutes.  We  can  say,  therefore,  that  the  ship  is  at  a  distance 

from  the  starting-point  of  3*24  miles,  and  that  its  displacement  is 
19-15  degrees  north  of  east. 

Here  we  are  dealing  with  vector  quantities,  since  in  order  to 
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define  them  we  have  to  state  both  magnitude  and  direction. 

It  is  obvious  that  a  vector  quantity  can  conveniently  be  repre- 
sented by  a  straight  line,  since  the  line  may  be  drawn  of  a  length 

to  represent  the  magnitude  of  the  quantity,  and  also  be  drawn  in 
a  definite  direction  to  represent  the  direction  of  the  quantity.  In 
fact,  this  is  why  such  quantities  are  called  vector  quantities.  A 
vector  is  a  straight  line  of  definite  length,  drawn  in  a  definite 

direction.  In  order  to  indicate  the  starting-point  of  the  vector, 
or  to  indicate  what  is  called  the  sense,  it  is  often  convenient  to 

put  an  arrow-head  on  the  vector  as  is  shewn  in  fig.  1. 

Addition  and  Subtraction  of  Vectors 

Suppose  we  have  two  vectors  as  shewn  in  fig.  2.  Let  us  call 
them  X  and  y.  If  we  want  to  find  the  vector  sum  of  x  and  y, 

we  take  a  line  OA  equal  and  parallel  to  x,  and  then  a  line  AB 
equal  and  parallel  to  y.  The  sum  of  the  two  vectors  is  given  by 
OB.    We  write  this  : 

OB  =  OA  +  AB, 

the  line  over  the  top  representing  the  fact  that  the  addition  is 

vector  addition.    The  order  of  the  letters  gives  the  sense. 

Fig.  2. 

If  we  wish  to  find  the  vector  difference  of  x  and  y  we  take 
the  line  OA  as  before,  and  then  draw  the  line  AB  of  the  same 



ELEMENTARY  DYNAMICS 

length  as  y^  in  the  same  direction,  but  in  the  opposite  sense  as 
shewn  in  fig.  3. 

We  have         OB' =  OA  +  AB' =  OA-AB  =  cc-y. 

Now  in  many  cases  it  is  convenient  to  draw  the  figure  accu- 
rately to  scale,  and  to  ̂   measure  the 

vector  sum  or  difi'erence.  Sometimes, 
however,  it  is  more  convenient  merely 

to  sketch  the  figure  and  to  calculate  the 

true  length  and  direction  of  OB  or  OB'. 
We  shall  generally  know  ̂ ,  the  angle 

between  the  vector  quantities  we  are 

dealing  with. 

Draw   OM    perpendicular   to   AB  as 
,  then 

0B2  =  0M2+  MB^ 

==0M2  +  (AB-MA)2 
=  OM^  +  AB^  -  AB  .  2MA  +  MA^ 

=  OA^  +  AB^  -  2AB  .  OA  cos  Q, 

z^  =  01?  +  y^  —  2xy  cos  6. 

OB'2  =  OA^  +  AB'2  +  2AB' .  OA  cos  0, 

or  z"^  =  ar^  +  2/^  +  2xy  cos  6. 

shewn  in  fig.  4 Fig.  3. 

or 
Similarly 

Fig.  4. 

The  vector  OB  is  called  the  resultant  of  OA  and  AB. 

TJie  resultant  of  a  number  of  quantities  represents  the  single 
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the   two 

esultant 

quantity  which  is  exactly  equivalent  in  every  way  to  the  number 

of  quantities. 
For  example  in  fig.  1,  OB  is  the  resultant  of  OA  and  AB,  and 

the  ship  would  be  in  exactly  the  same  position  if  it  had  moved 

3*24  miles  in  a  direction  inclined  at  an  angle  19 '15°  N.  of  E.,  as 
it  is  by  making  the  two  different  movements. 

Sometimes  we  shall  find  it  convenient  to  think   of  a   single 
quantity  as  made  up  of  two  quantities.    In  this  case 

quantities  are  called  the  components  of  the  single 
quantity. 

For  example,  consider  the  case  of  a  body  being  pulled  in  a 

certain  direction  by  a  pull  of  magni- 
tude R  (see  fig.  5).  We  might  produce 

exactly  the  same  effect  on  the  body 

by  applying  two  pulls  P  and  Q.  say. 
These  are  then  called  components  of 
the  pull  R. 

If  we  fix  the  directions  of  P  and 

Q,  we  can  at  once  obtain  their  mag- 
nitudes, by  remembering  that  the 

vector  sum  of  P  and  Q.  must  be 

equal  to  R. 

Let  OB  represent  R.  From  B  draw  BA  parallel  to  the  direction 
of  Ql  to  intersect  P. 

Then  OB  ==  OA  +  AB, 

.'.  OA  represents  P,  and  AB  represents  Ql. 
P  _  OA  _       sin  <^ 

R  ~         ~  ~ 

Now, 
OB 

sin  (d  +  <!>)' 
sin  <f> 

and 
sin  (O  +  cf))' 
AB  sin  0 

OB 
sin  (0  +  (f>)' sin^ 

sin  {0  +  (f>)' 
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Generally  we  employ  rectangular  components,  i.e.  components 
which  are  at  right  angles  to  one  another 
as  shewn  in  fig.  6. 

In  this  case  we  have 

Component  AB  =  OB  sin  0, 

„  OA  =  OBcos^. 

There  is,  however,  more  advantage  in 

choosing   rectangular  components   than 

the  mere  simplification  of  resolution,  if  the  angle  OAB  is  a  right 

angle,  then  the  components  OA  and  AB  represent  the  whole  of  the 
quantity  OB  which  is  effective  in  the  two  directions  OA  and  AB 

respectively.  On  the  other  hand,  if  the  angle  OAB  is  not  a  right 
angle,  as  in  fig.  5,  then  OA  and  AB  are  not  the  whole  component 

of  OB  in  these  directions,  since  component  AB  has  an  effect  in  the 

direction  OA  and  component  OA  has  an  effect  in  the  direction  AB. 
The  whole  component,  or  resolved  part,  of  OB  in  direction  OA  is 

given  by  OM  in  fig.  5,  where  BM  is  at  right  angles  to  OA. 

OM  =  OA  + ABcosBAM 

=  0A  + ABcos(^  +  <^) 

=  OA  +  the  rectangular  component  of  AB 
in  the  direction  OA. 

In  the  case  of  rectangular  components,  neither  component  has 

any  effect  in  the  direction  of  the  other.    We  shall  better  realise 

the  importance  of  this  later  on  when  we  have  dealt  with  more 

concrete  cases,  but  we  will  take  one  illustration  here.    Suppose  a 

motor-car  is  travelling  due  east,  and  there  is  a  north-east  wind 

blowing  at  20  miles  per  hour.    The  north-east  wind  is  equivalent 

to  two  winds,  one  blowing  from  the  north  at  20  x  sin  45°,  i.e. 
20  20 
—7^  miles  per  hour,  and  one  blowing  from  the  east  also  at  —r^ 

miles  per  hour.  Now  the  northerly  component  will  have  no  ap- 
preciable effect  on  the  motion  of  the  car,  whereas  the  easterly 

component  will  produce  a  direct  resistance  to  the  car's  motion. 
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It  may  be  noted  that  whereas  there  is  only  a  single  resultant 

of  two  quantities,  there  are  an  infinite  number  of  pairs  [of  com- 
ponents which  will  give  the  same  resultant. 

This  is  shewn  in  fig.  7. 

The  components  (OAj,  A^B),  (OA2,  AgB),  (OA3,  A3B)  all  have  the 
same  resultant  OB. 

Fig.  7. 

Average  Values 

When  we  are  dealing  with  two  quantities,  say  y  and  a?,  which 
are  related  to,  or  depend  upon,  one  another,  we  shall  at  times 

use  the  expression,  '•Hhe  average  of  one  quantity,  y  say,  with 
respect  to  the  other  x"  Let  us  make  quite  sure  we  understand 
exactly  what  we  mean. 

If  we  were  talking  about  cricket  there  would  be  no  need  to 

explain  what  was  meant  by  the  average  of  a  batsman  during  the 
season.  This  is  simply  the  total  number  of  runs  made  divided  by 

the  total  number  of  innings  played.  Other  average  values  are 
obtained  in  a  similar  way. 

Suppose  for  example  we   travel   by  motor-car   between    two 
places  distant  150  miles  and  we  take  5J  hours  to  do  the  journey, 150 

we  say  the  average  speed  was  — — ,  i.e.  27  3  miles  per  hour. 
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There  again  we  simply  take  the  total  value  of  the  one  quantity 
and  divide  it  by  the  total  value  of  the  other  quantity. 

We  must,  however,  be  careful  to  state  what  two  quantities  we 

are  considering.  For  example,  we  may  state  the  average  cost  of 

an  army  to  the  country  during  a  war  as  so  many  pounds  per 
day,  or  we  may  state  the  average  cost  per  soldier.  The  values 

will  be  entirely  different.  In  each  case-  we  find  the  total  change 

in  one  quantity  and  divide  by  the  total  change  in  the  other 
quantity.    We  shall  have  many  illustrations  of  this  as  we  proceed. 

Rate  of  Change 

Another  idea  we  have  to  get  hold  of  clearly  is  the  rate  of  change 
of  one  qy^ntity  with  respect  to  another. 

Suppose  for  example  we  have  two  quantities,  denoted  by  y  and 
X,  and  that  y  varies  with  x  in  some 

particular  manner.  We  may  ex- 
press this  by  giving  a  table  of 

simultaneous  values  of  the  two 

quantities,  as  is  done  in  a  table  of 

logarithms.  Here  the  two  quanti- 
ties are  the  numbers  x  and  their 

logarithms  y. 

We  may  also  express  the  vari- 
ation by  representing  simultaneous Fig.  8. 

values  of  the  two  quantities  on  a  curve  as  in  fig.  8. 

For  any  point  A  on  the  curve,  ON  represents  the  value  of  x  and 
NA  or  OM  represents  the  corresponding  value  of  y. 

Frequently  we  want  to  know  how  rapidly  one  quantity,  y  say, 
will  change  as  the  other  quantity  x  changes.  For  example,  we 

may  have  a  motor  the  speed  of  which  is  changing,  and  we  want 
to  know  what  is  the  actual  speed  at  different  instants  of  time. 

This  is  given  us  by  a  speedometer.    If  a  speedometer  is  not  avail- 
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able,  we  may  get  the  speed  approximately  by  noting  the  time 

taken  to  travel  from  one  mile-post  to  the  next.  This  will  of 
course  only  give  us  the  average  speed  for  the  number  of  minutes 
required  to  travel  the  mile,  since  the  speed  of  the  car  may  be 

increasing  or  decreasing  during  this  time.  We  should  obviously 

get  more  nearly  what  we  wanted  if  we  had  posts  at  short  in- 
tervals of  distance,  and  an  accurate  stop-watch  to  measure  the 

time  taken  between  two  consecutive  posts.  ̂   If  we  have  a  cyclo- 
meter, we  may  use  this  to  measure  our  distances  and  thereby  get 

still  more  accurate  values  of  the  speed.  Now  suppose  we  take 

the  times  for  different  distances  from  our  starting-point,  and 
express  the  result  by  a  curve  as  in  fig.  9  where  y  represents  the 

distance  from  the  starting-point  and  x  represents  the  time  taken. 

Time  C    D 

Fig.  9. 

To  find  the  speed  of  the  car  after  a  time  given  by  OC  we  draw 

CP  perpendicular  to  Ox,  then  PC  is  the  distance  from  the  starting- 

point. 
Now  find  the  distance  from  the  start  when  the  time  has 

increased  by  a  small  amount  represented  by  CD.  QD  drawn 
perpendicular  to  Ox  will  give  the  required  distance.  Draw  PK 
perpendicular  to  QD.  Then  the  extra  distance  moved  in  the 

small  time  is  given  by  QD  -  PC  =  QK. 

Let  us  represent  the  small  change  of  distance  by  hs  and  the 
small  change  in  time  by  8^. 
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Then  the  average  speed  for  the  small  interval  of  time 

OK 

~  PK 

=  tanQPK 

=  tan  0. 

Now  we  shall  get  nearer  to  the  true  value  of  the  speed  at  P, 

the  smaller  we  make  PK;  we  shall  only  get  the  true  value  when 
we  take  the  interval  of  time  indefinitely  small.  If  we  do 

this  we  can  no  longer  measure  QK  and  PK,  but  we  can  still 

measure  tan  ̂ ,  because  the  line  joining  PQ  becomes'  the  tangent 
to  the  curve  at  P,  when  PK  becomes  indefinitely  small.    This  is 
shewn  in  fig. 10. 

Speed  at  P  =  tan  0,  i.e.  the  value  of  ̂   when  St  is  made  inde- 
ed 

finitely  small 

We  write 

change  of  distance  with  respect  to  time 

We  write   this   -j-  =  tan  6,  where  -r-    stands  for  the  rate  of at  at 
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We  have  taken  a  special  case,  but  of  course  the  same  holds 

generally  for  any  quantities  x  and  y  and  we  ma^  write 

dx 
tan  Q. 

When  Q  is  greater  than  one  right  angle,  and  less  than  two 

right  angles,  tan  6  is  negative.    This  means  that  the  rate  of  change 

is  negative,  i.e.  y  is  decreasing  as  x  increases,  see  point  T  (fig.  10). 

Now  in  certain  cases,  instead  of  accurately  drawing  the  curve 

to  scale  we  can  express  the  relation  between  y  and  x  analytically. 

In  such  cases  we  can  also  determine  the  value  of  - 

dx' 

J.  the 

rate  of  change.    This  is  done  for  us  in  the  differential  calculus. 

Fig.  11. 

We  will  find  the  value  of  the  rate  of  change  of  y  with  respect 

to  x  for  two  simple  relationships.  This  will  save  us  a  good  deal 
of  trouble  later  on. 

(1)    Suppose  the  relation  is  given  by 

y  =  a  sin  hx. 

This  is  shewn  plotted  in  fig.  11. 
dii 

Now  we  want  to  find  the  value  of  -^ ,  i.e.  the  value  of  tan  0  at dx 

any  point. 
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We  may  obtain  it  thus:  Let  the  radius  of  the  circle  in  fig.  12 
be  made  equal  to  a  and  let  the 

angle  AOB  be  equal  to  hx.  Let, 

also,  the  angle  BOC  be  the  small 

angle  representing  a  small  incre- 
ment of  a?,  namely  hx,  i.e. 

A 

AOB  =  hxj 

AOC  =  h(x+  hx), 

.'.    BOC  =  6.  8a;. 

The  value  of  y  corresponding  to 
x  =  asinhx  =  BN. 

The  value  of  y  corresponding  to    "  ^ig-  ̂ 2. 
(x  +  hx)  =  asmh{x-¥hx)  =  CM. 

The  increase  of  y  for  increase  of  x  equal  to  hx  is  OK, 

hy  _CK '  '  hx       hx' 
A 

But  if  COB  is  very  small  then  the  chord  CB  will  be  very  nearly 

at  right  angles  to  OB,  i.e. 
A  A 

CBK  =  complement  of  KBO 
A 

=  complement  of  BOA. 

Also  CB  =  OB  X  angle  COB 
=  a  X  b .  hx, 

A 

and  CK  =  CB  sin  CBK 
A 

=  CB  cos  BOA 

=  a.b  .hx.  cos  bx. 

,  dy      ab  .hx.  cos  bx ' '  dx  hx 

-  ab  cos  bx. 

Again,  suppose  that 

y  =  a  cos  bx. 
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Using  fig.  12,  we  have, 

Value  of  y  corresponding  to  aj  -a cos 6aj  =  ON, 

„  „  „  (a3  + Sec)  ==acos6  (£c  + 8a?)  =  OM. 

Increase  of  y  for  increase  of  x  equal  to  Saj  is  -  MN    (since  y 
really  decreases), 

,   hy _     MN ' '  hx         Sx  ' 

But  MN=:KB  =  CBcosKBC 

a.b.Sx.sin  BOA, 

-    —     ab  sin  bx, 
ax 

We  have  then,  if 

y  =  a  sin  bx,     -f  =  ab  cos  bx. 
^  '     dx  ' 

and  if  y  -  a  cos  bx,     —-  —  —  ab  sin  bx. ^  '     dx 

Area  Curve 

In  some  cases  we  are  given  the  rate  of  change  of  one  quantity 
with  respect  to  another,  and  we  want  to  find  the  total  efiect  of 

this  rate  of  change.  For  example,  we  may  be  given  the  speed  of 

a  body  at  different  instants  of  time,  and  want  to  find  how  far  the 
body  has  travelled  in  different  intervals  of  time.  It  will  be  shewn 

in  the  next  chapter  that  the  distance  is  given  by  the  area  under 

the  curve  representing  the  speed  and  time.  We  will  now  examine 
a  graphical  construction  which  enables  the  area  curve  to  be 
drawn. 

Suppose  the  given  curve  is  OPQ  and  we  want  to  find  another 

curve  Opq%\xc\v  that  the  ordinate  at' any  point,  say  qlA,  represents 
the  area  between  the  curve  OQ  and  the  axis  of  x.  Take  any 

portion  of  the  curve  OP  and  let  KL  be  the  mid -ordinate.  Draw 

KK'  parallel  to  Ox  and  join  K'  to  any  point  B  on  Ox  produced. 

Draw  Op  parallel  to  BK',  cutting  FN  at  ;?.  Then  /)N  is  propor- tional to  the  area  OPN. 
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l.e. 

The  triangles  OpN  and  BOK'  are  similar 

pN      OK'  _  KL 
"  ON  ~  OB  ~  OB  ' 

jt)N  =^^  X  KL.  ON OB _1_ 

OB 

(area  OPN), 

i.e.  jo  is  a  point  on  the  area  curve. 

For  the  area  under  PQ  take  the  mid-ordinate  RS.  Draw  RR' 

parallel  to  Ox  and  join  BR'.  Draw  pq  parallel  to  BR',  and  draw 
pv  parallel  to  Ox. 

or 

O        L        N       S       M 

Fig.  13. 

The  triangles  pvq  and  BOR'  are  similar, 

vq  _  OR'  _  RS '  '  pv~  OB       OB 

_  J^ 

~0B 

Hence  Mq=pN  +  vq 
1 

X  (RS  X  pv) 

(area  NPGtM). 

OB 
(area  OPQM), 

i.e.  5'  is  a  point  on  the  area  curve. 

i 
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Similarly  we  may  find  as  many  points  as  we  like. 

Scales.    The  scale  of  the  area  curve  depends  upon  the  distance 
OB. 

Let  OB  =  A  inches. 

Take  1  square  inch  of  area  under  the  original  curve.    This,  in 

the  area  curve,  is  represented  by  an  ordinate  of  length  y  inches. 

.*.  the  scale  for  ordinates  of  the  area  curve  is, 

1  inch  =  h  sq.  ins. 

Example.     A  speed-time  curve  is  drawn  to  the  following  scales^ 

1  inch  =  5  seconds,  for  the  x  axis, 

and,  1  inch  =  4  feet  per  second,  for  the  y  axis. 

It  is  required  to  find  the  value  of  h  in  inches,  so  that  the  scale 

for  the  ordinates  of  the  area  curve  is 

1  inch  —  bOfeet. 

1  sq.  in.  under  the  speed-time  curve  =  4x5  feet. 

.*.  for  the  ordinates  of  the  area  curve  we  have, 
A  X  4  X  5  =  50, 

or,  h  —  2^  inches. 

Examples.   Chapter  I 

X.  A  sailing  boat  travels  400  yards  in  a  direction  north-east  and  then 

500  yards  in  a  direction  60°  west  of  north.  How  far  has  it  travelled  from  the 
starting-point  and  in  what  direction? 

If  the  boat  now  returns  to  its  starting-point  by  moving,  first  due  south  and 
then  due  east,  how  far  will  it  travel  in  each  of  these  directions? 

2.  Three  vectors  are  of  magnitude  3,  2,  and  1,  and  their  directions  are 
parallel  to  the  sides  AB,  BC,  CA  of  an  equilateral  triangle,  taken  in  order. 
Shew  that  the  resultant  vector  is  perpendicular  to  the  direction  of  BC,  and 
find  its  magnitude. 

Find  also  the  values  of  two  vectors,  one  acting  in  direction  AB  and  the 
other  at  right  angles  to  AB,  which  have  the  same  resultant  as  the  three  given 
vectors. 

L.  E.  D.  2 
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3.  Three  wires  radiate  from  a  telegraph  pole,  in  a  horizontal  plane.  The 
first  runs  east,  the  second  north-east  and  the  third  north-west.  The  tensions 
in  the  wires  are,  respectively,  200  lbs.,  150  lbs,  and  300  lbs.  Calculate  the 
magnitude  and  direction  of  the  resultant  tension.  The  direction  of  the 
resultant  is  to  be  specified  by  the  angle  ifc  makes  with  the  first  wire. 

Verify  your  result  by  a  graphical  construction. 

4.  A  vector  (r,  d)  is  a  straight  line  of  length  r  which  makes  an  angle  6 
with  some  reference  line,  the  angle  being  measured  in  a  counter-clockwise 
direction  from  the  reference  line. 

If  A,  B,  C  represent  the  vectors  (3,  40°),  (5,  115°),  and  (4-5,  260°)  respec- 
tively, find  graphically,  (a)  A  -f  B  -f  C,  (b)  A  -  B,  (c)  B  -  C  -  A. 

Check  the  results  analytically  by  resolving  the  separate  vectors  in  two 

directions,  along  and  perpendicular  to  the  reference  line.  • 

5.  The  depth  of  a  trench,  measured  from  the  surface  of  the  ground,  at 
different  distances  along  the  bottom,  is  given  in  the  table.  Plot  a  longitudinal 
section  of  the  trench  and  estimate  the  average  depth. 

Depth  in  feet  . . . 3-0 
6-2 

5 

8-1 

24 

6-7 

40 
5-1 

54 

6-0 

60 

5-6 

70 

6-0 

80 

5-2 

92 

4-3 

100 
Distance  in  feet 0 

6.    A  body  is  moved  from  rest  by  a  pull  P  which  changes  with  the  distance 
(s)  moved  and  the  time  {t)  taken,  according  to  the  equations 

irt 
P  =  80-5s,  and  P  =  80cos 30 

the  value  of  P  being  in  pounds  when  s  is  measured  in  feet  and  t  is  measured 

in  seconds.  Find,  graphically,  the  space-&\era,ge  of  the  pull,  and  the  time- 
average  of  the  pull,  for  the  first  8  feet  of  motion. 

7.    The'  total  number  of  letters  collected  from  a  certain  district  in  one 
year  was  854,200.   What  was  the  average  number  of  letters  collected  per  day? 

If  there  are  42  post  boxes  in  the  district  what  was  the  average  number  of 
letters  posted  per  week  in  each  box? 

The  population  in  a  certain  district  at  intervals  of  5  years  was  as  shewn 
below. 
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Plot  the  figures,  and  from  the  graph  estimate  the  population  in  1908  and 
1917,    Find  also  the  rate  of  increase  per  year  for  the  same  years. 

Population  in  ] 

thousands    j"* 20-8 

29 

45-7 

71-2 79-3 
Year   1900 1906 1910 1915 1920 

9.  Plot  the  curve  given  by  ̂  =  2  8in-^,  between  the  values  a; =0  and o 

x=S.   Measure  the  rate  of  change  of  y  with  respect  to  a;  for  a;  =  1  and  a;=2'5. 
Check  your  results  analytically. 

10.  Draw  the  circle  x^  +  y'^  =  4:,  and  from  it  find  the  value  of  -p,  (1)  for 
a;  =  l-5,  (2)  fora:=-l-5. 

11.  Draw  a  semicircle  with  a  diameter  of  4  inches.  Taking  one  end  of  the 
diameter  as  the  origin,  and  the  axis  of  x  along  the  diameter,  draw  the  area 
curve. 

What  is  the  area  under  the  semi-circular  curve  from  x=0,  to  a;  =  1-5? 

12.  Plot  the  curve  y  =  l'5  sin  —  ,  between  the  values  x  =  0  and  a;  =  4,  and 

draw  the  area  curve.    When  the  ordinates  of  the  original  curve  are  negative 
the  area  is  to  be  considered  negative. 

x^ 

13.  Plot  the  curve  y=  -j,  between  the  values  x==0  and  a;  =  4,  and  draw  the 
area  curve. 

2—2 
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MOTION 

Speed  and  velocity 

Speed.  The  meaning  of  this  is  quite  generally  understood.  It 

is  merely  the  rate  of  travel  qf_a_bgd:y.  For  example,  if  we  state 
that  a  train  is  travelling  at  25  miles  an  hour,  all  we  mean  is,  that 

if  the  train  continues  to  run  at  the  same  speed  it  will  pass  over 
25  miles  of  line  in  one  hour.  Here  we  are  not  concerned  with  the 

direction  of  travel.  The  direction  may  be  changing  continually, 

or  it  may  be  either  in  a  straight  line  or  along  any  curved  path. 

Velocity.  The  velocity  of  a  body  is  the  rate  of  change  oj 

'^osUwnBiidi  is  always  measured  ina^^traight  line.  It  is  essentially 
a  vector  quantity. 

Consider  a  point  on  the  flywheel  of  an  engine.  The  flywheel 

may  be  rotating  uniformly  at  240  revolutions  per  minute,  and  we 

may  say,  therefore,  that  a  point  on  the  rim  has  a  constant  speed, 
but  we  cannot  say  that  it  has  a  constant  velocity,  in  fact,  the 

velocity  is  continually  changing,  since  its  direction  is  changing, 

being  always  tangential  to  the  wheel.  This  is  a  very  important 
distinction,  as  will  be  seen  later. 

Velocity  may  be  either  uniform  or  variable.  If  a  body  is 

moving  with  a  uniform  velocity  then  it  will  pass  over  equal  dis- 
tances in  equal  intervals  of  time,  no  matter  how  short  the  intervals 

may  be,  and  the  distances  will  all  be  in  the  same  direction.  In  the 

case  of  a  varying  velocity,  the  distances  passed  over  in  equal  in- 
tervals of  time  will  be  different,  or  it  may  be  that  the  directions 

will  be  different. 
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Unit  of  Velocity.  In  the  p.  p.  s.  system  this  is  1  foot  per  second. 

In  the  c.  G.  s.  system  the  unit  is  1  centimetre  per  second. 

If  we  say  that  a  body  is  moving  with  a  velocity  of  5  feet  per 
second  due  east,  we  imply  that  if  it  continues  for  1  second  to  have 

this  velocity  it  will  have  moved  5  feet  due  east  in  the  course  of 

the  second.  If  the  velocity  be  varying,  then  we  have  two  ways  of 
dealing  with  it ; 

( 1 )  We  may  state  the  ac^wa?  velocity  it  has  at  each  instant,  or, 

(2)  We  may  state  the  average  velocity  in  respect  to  time  for 
the  interval  under  consideration. 

Let  us  look  at  these  things  graphically. 

K 

  a   ■■   

Fig.  14. 

Consider  a  body  K  moving  in  a  straight  line,  and  let  us  start 
measuring  the  time  when  the  body  is  at  A. 

Now  we  may  represent  the  position  of  the  body  K  at  any  in- 
stant by  drawing  a  distance-time 

curve  as  shewn  in  fig.  15.  After  a 

time  t  seconds  represented  by  ON, 
the  distance  from  A  will  be  given 

by  the  ordinate  PN,  say  s  feet. 

If  the  body  had  a  uniform  ve- 
locity it  is  easy  to  see  that  the 

distance-time  curve  would  be  a 

straight  line,  since  s  has  to  increase 

uniformly  with  t. 

It  is  also  evident,  in  this  case,  that  the  velocity  will  be  repre- 
PN 

sented  by  — -,  i.e.  by  tan  6^,  (fig.  16). 

« 
o 

^^ 

c 

^^^ 

i 

P^^^ 

(0 

B 

/^ 
1 

^^<8 
( 

! 
O  N    Time 

Fig.  15. 
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The  velocity-time  curve  would  be  a  straight  line  as  shewn  in 

tan  6 

Time 

Fig.  16.  Fig.  17. 

Suppose  the  velocity  is  varying  as  shewn  in  fig.  15,  then  for  any 

interval  of  time,  t  say,  we  can  find  the  average  velocity. 
_,,  .       .„  ,    ,     distance  passed  over      PN      s 
This  will  merely  be   -. — - — -,    =  ■ —  =  -  . time  taken  ON       t 

We  may  want  to  know  the  velocity  at  any  particular  instant, 

and  this  we  can  find  from  the  space-time  curve  as  follows : 

Suppose  we  require  the  velocity  after  a  time  t,  when  the  distance 

is  given  by  point  P  on  the  curve. 

Draw  TP  the  tangent  to  the  curve  at  the  point  P ;  then  the 

velocity  at  P  will  be  given  by  tan  PTN,  i.e.  tan  6. 

ds We  have. 
velocity 

dt 

=  tan 

We  may  now  plot  a  velocity-time  curve,  fig.  18,  the  ordinates 
of  which  represent  the  values  of  tan  6  for  the  space-time  curve. 

>» 
p •fj 

^^Q 

> 

-^ 

i 

-8t 

— - 

O  N  M  A  Time 

Fig.  18.  Fig.  19. 

Agliin,  we  might  have  been  given  the  velocity-time  curve  and 
want  to  use  it  to  find  the  distance  passed  over. 
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It  is  easy  to  see,  fig.   19,  that  for  a  small  interval  of  time  8t, 

the  distance  passed  over  is  nearly  equal  to  the  velocity  at  P  x  8^ 

=  NPx  MN 

=  area  of  rectangle  PM,  approximately. 

For  the  true  distance  we  must  take  St  indefinitely  small. 

In  this  case  we  cannot  draw  the  rectangle  as  it  becomes  a  line, 

but  we  can  clearly  see  that  the  sum  of  the  rectangles,  for  all  the* 
small  intervals  of  time  from  O  to  A,  becomes  the  area  under  the 
curve  on  the  base  OA. 

Having  obtained  the  distance  passed  over  in  any  time  t  by  means 

of  the  area  under  the  curve,  we  can  now  obtain  the  average  velocity 

with  regard  to  time  by  dividing  this  distance  by  the  time. 

^-                        ,     .^        area  above  OA 
I  he  average  velocity  =   —   

=  the  mean  height  of  the  curve. 

Example  (1).  A  train  has  a  speed  of  60  miles  jjer  hour,  what 
is  the  speed  in  feet  per  second? 

60  miles  per  hour 

=  60  X  1760  X  3  feet  per  hour 

60x1760x3^. 

^       60x60       .f^^^P^^«^<^^^^d 
=  88  feet  per  second. 

Example  (2).  The  vanes  of  a  de  Laval  Steam  Turbine  are  at 

a  mean  distance  o/*3J  inches  from  the  centre  of  the  rotor  which  runs 
at  30,000  revolutions  per  minute.    Find  the  speed  of  the  vanes. 

Speed  =  27r  X  3-5  inches  in  _  minute 

Stt  X  3-5  X  30,000  ̂  
—  leet  per  minute 12 

27r  X  3-5  X  30,000  X  60 
12x5280 

625  miles  per  hour. 

miles  per  hour 
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Example  (3).  A  shell  is  fired  at  a  target  2000  yards  away, 
and  explodes  at  tJie  instant  of  hitting.  At  a  point  distant  1800  yards 

from  the  gun  and  400  yards  from  the  target,  the  sounds  of  firing 

and  exploding  of  the  shell  arrive  simultaneously.  Taking  the  velocity 
of  sound  in  air  as  \0^0  feet  per  second,  and  assuming  the  path  of 

the  shell  straight,  find  its  average  velocity. 

In  fig.  20,  let  A  be  the  position  of  the  gun,  B  the  position  of  the 

target  and  C  the  point  where  the  sounds  are  heard. 
2000  yds 

^800  V
^s 

Fig.  20. 

Time  for  sound  to  travel  from  A  to  C  ==  time  for  shell  to  travel 

from  A  to  B  4-  time  for  sound  to  travel  from  B  to  C. 

Let  V  —  the  average  velocity  of  the  shell  in  feet  per  second,  then, 
1800  X  3      2000  X  3      400  X  3 

1080 

2000 

V 

1400 
1080 

1080 

or, 
V  =  1542  feet  per  second. 

Example  (4).  At  a  particular  instant  a  body  is  moving  with  a 
velocity  of  b  feet  per  second  and  3  seconds  later  its  velocity  is  \Ofeet 

per  second.  If  it  is  known  that  the  speed 

is  increasijig  uniformly  with  the  time, 

find  the  distance  parsed  over  in  the  three 
seconds. 

The  velocity-time  curve  is  as  shewn 
in  fig.  21.  It  is  obvious  that  the  time 

average  of  the  velocity 

=  J(10  +  5)  =  7*5  feet  per  vsecond. 

Distance  passed  over  =  7*5  x  3 
=  ?2-5feet. 

Time 

Fig.  21. 
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Example  (5).  The  speed-time  curve  for  a  motor  omnibus^ 
obtained  hy  means  of  a  speed  recorder,  is  given  in  the  following 
table : 

Speed 
m.p.h. 6-1 8-1 

9-4 
10-7 

12-8 
14-4 15-9 

16-8 17-7 
18-3 

18'7 

19-2 
Time 
sees. 

2 4 6 8 
12 

16 

2Q 

24 
28 

32 
36 

40 

It  is  required  to  draw  the  distayice-time  curve. 

The  speed- time  curve  is  shewn  plotted  in  fig.  22,  the  scales 
being : 

1  small  division  =  1  mile  per  hour, 
and  r  small  division  =  1  second. 
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«          ̂ '^                             ^ 
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10 30 
35 

40 

15  20  25 

Fig.  22. 

The  distance  passed  over  is  represented  by  the  area  under  the 
.curve  to  a  scale  such  that 

1  small  square  =  ̂|^  x  1  feet. 

Take  the  distance  passed  over  in  the  first  10  seconds. 
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The  number  of  small  squares  under  the  velocity-time  curve  =  82, 

i.e.  distance  =  — wk —  feet. bU 

For  the  distance  scale  take 

1  small  division  =  ̂-^-  feet. 

The  distance  for  first  10  seconds  =  4-1  divisions. 

This  is  shewn  by  point  A. 

The  distance-time  curve  obtained  in  this  way  is  shewn  in  fig.  22. 

If  squared  paper  is  not  available  the  graphical  method  given  in 

chapter  I  may  be  used  for  drawing  the  area  curve. 

Referring  to  fig.  13,  p.  16,  if  we  keep  the  same  scales  as  in 

fig.  22,  we  find  the  distance  OB  thus. 
Let  h  =  the  number  of  small  divisions  in  OB. 

The  scale  for  distances  is,  1  small  division  =  hx^^  feet, 
•      7,   V    88  _  88 

i.e.  h=  20  small  divisions. 

Example  (6).  The  supply  pipe  to  a  tap  is  f  inch  bore,  and  the 
nozzle  of  the  tap  at  exit  has  a  bore  of  J  inch.  The  water  leaves  the 

tap  in  a  direction  inclined  at  90  degrees  to  the  supply  pipe. 

If  the  tap  discharges  3*6  gallons  per  minute,  what  is  the  velocity 
of  the  water  at  exit,  and  the  change  of  velocity  as  it  passes  through 
the  tap. 

1  cubic  foot  of  water  contains  6  J  gallons. 

Let  V  =  the  velocity  of  water  at  exit  in  feet  per  second. 

The  discharge  =  ̂   ̂-[aa  ̂  ̂   ̂ ^^^^  ̂ ®®*  P®"^  second 

=  -   —~~  XV  X  6-25  X  60  gallons  per  minute. 16  X  144 

Hence  rir^,^  x  6-25  x  60  x  -y  =  3*6, 16  X  144 
3-6x16x144 

^^  ""  ~  'tt  X  6-25  X  60 
=  7*05  feet  per  second. 
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li  u  =  the  velocity  in  the  supply  pipe,  then 

TT  X9 

27 

4  X  64  X  144 ~xu  X  6-25x60  =  3-6, 

and u  =  7-05  X  ̂   X  J 

=  12*5  feet  per  second. 

In  fig.  23  let  OA  represent  u  and  OB  represent  v,  then  AB  repre- 
sents the  change  of  velocity,  i.e.  the 

velocity  which  has  to   be  vectorially 

added  to  the  velocity  u  to  change  it 
to  velocity  v. 

Change  of  velocity  =  Ju^  +  v^ 

=  n/12-52  + 7-052 

=  V205T  °  ̂ig-  23. 
=  14-3  feet  per  second. 

The  direction  is  given  by  the  angle  ̂ ,  i.e. 

tan~^ -  =  tan  ̂   -^  ̂  
u  12-5 
=  291"  (nearly). 

Angular  Velocity 

When  a  body  is  revolving  about  an  axis  it  is  often  more  con- 
venient to  express  its  speed  in  terms  of  the  angle  turned  through 

in  unit  time,  instead  of  the  distance  moved  in  unit  time.  The 

former  is  called  the  angular  velocity  of  the  body  and  is  usually 

measured  in  radians  per  second  or  revolutions  per  minute. 

It  is  easy  to  establish  a  connection  between  the  angular 

velocity  (w)  and  the  speed,  or  velocity  (v)  at  any  instant  (t).  Let 
a  point  A  rotate  about  centre  O,  and  let  its  distance  from  the 
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centre  be  r.    Suppose  it  turns  through  6  radians  in  time  t  and 

arrives  at  the  point  B  (fig.  24). 
n 

Angular  velocity  =  cd 

But  speed,  v 

t 

arc  AB      vQ 

t  t 

Fig.  24. =  (u .  r. 

Hence  the  velocity  at  any  instant  or  the  speed  =  wr. 

Example  (7).  The  flywheel  of  an  engine  is  7  fleet  in  diameter 
and  rotates  at  240  revolutions  per  minute.  Find  the  angular 

velocity  in  radians  per  second^  and  the  linear  speed  ofl  a  point  on 
the  rim.. 

Angular  velocity  =  240  revs,  per  min.  -f 

240  '.^ 
-j^-  revs,  per  sec.  ^ 

240  xW      ,. 
radians  per  second 60 

=  Stt  rads.  per  sec. 

Speed  of  a  point  on  the  rim  =  cor 
=  87rx|- 

—  88  ft.  per  sec. 

Example  (8).  A  nut  is  rotated  on  a  flxed  screw  at  N  revolutions 

per  minute.  If  the  screw  has  n  threads  per  inch  and  is  ofl  effective 

diameter  d  inches^  find  an  expression  flor  the  speed  ofl  sliding  ofl 
the  nut  and  screw. 

Suppose  we  strip  off  one  thread  and  flatten  it  out,  we  should 

get  an  inclined  plane  as  shewn  in  fig.  25,  where  CB  equals  the 
circumference  of  the  screw,  i.e.  ird,  and  AB  equals  the  pitch  of  the 

.       1 
screw,  I.e.  -. 
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Let  u  =  the  speed  of  sliding  along  AC  in  feet  per  minute.    We 

may  resolve  this  into  two  compounds  (a)  vertical  v^f  (b)  hori- 
zontal Vg. 

Fig.  25. 

In  one  revolution  the  horizontal  travel  is  ird  inches. 

.'.  the  horizontal  speed  =  7ro?N  inches  per  minute. 

In  one  revolution  the  vertical  travel  equals  -  inches. 
^         n 

N 

.*.  the-  vertical  speed  =  -  inches  per  minute. 

The  velocity  of  sliding  is  equal  to  the  resultant  of  v^  and  v^, 

V 
vl  +  {-TrdnY  inches  per  minute. 

Acceleration 

In  precisely  the  same  way  as  velocity  is  the  rate  of  change 
of  position,  so  acceleration  is  the  rate  of  change  of  velocity  : 

i.e.  the  change  of  velocity  in  unit  time.  The  velocity  may  be  in- 
creasing uniformly,  in  which  case  we  get  a  constant  acceleration. 

For  example,  a  motor  car  increased  its  speed   uniformly  from 
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4  miles  per  hour  to  12  miles  per  hour  in  10  seconds.    Its  accelera- 

tion is  (12  —  4),  i.e.  8  miles  per  hour  in  10  seconds, 

=  ̂   miles  per  hour  in  1  second 

—  Tu  ̂   f  &  ̂̂ ®^  P®^  second  in  1  second 

=  1  '17  feet  per  second  per  second. 

Again,  the  velocity  may  be  changing  at  a  variable  rate,  e.g.  in 
the  first  second  it  may  increase  1  mile  per  hour,  in  the  second 
4  miles  per  hour  and  so  on.  The  acceleration  in  this  case  is  said 
to  be  variable. 

It  is  easy  to  see  that  acceleration  is  related  to  velocity  in 

exactly  the  same  way  as  velocity  is  related  to  position. 

Any  propeHies  or  formulae  which  hold  for  velocity  and  position 
will  hold  also  for  acceleration  and  velocity. 

Velocity-time  curve 

Suppose  we  are  given  a  velocity- time  curve  as  shewn  in  fig.  26. 
The  acceleration  at  any  time  t  will  be  given  by  the  slope  of  the 
curve  at  P,  i.e.  by  the  value  of  tan  6. 

Fig.  26. 

Again,  if  we  are  given  an  acceleration-time  curve  it  follows  that 
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the  change  of  velocity  in  time  t  is  given  by  the  area  under  the 
curve  from  A  to  P,  shewn  shaded  in  fig.  27. 

I Fig.  27. 

Velocity-space  curve 

In  certain  practical  problems  we  can  obtain  the  figures  for  a 

velocity-space  curve  and  it  is  often  necessary  to  estimate  the  ac- 
celeration.   If  V  denote  the  velocity,  and  t  denote  the  time,  the 

ov 
acceleration  is  given  by  the  value  of  ̂   when  ht  is  indefinitely U 

dv 
diminished,  i.e.  by  —  .    Suppose  we  wish  to  find  the  acceleration 

dt 
at  distance  s,  i.e.  at  point  P  on  the  curve,  fig.  28. 

Space 

Draw  the  tangent  PT  to  the  curve  at  P,  the  ordinate  PN  and 

the  normal  PG,  i  e.  the  perpendicular  to  the  tangent. 
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OV     6S 

Now  the  acceleration  =  ̂   •  ̂   j  when  U  is  indefinitely  diminished. 

But  the  limit  of 

and  the  limit  of 

8s 

It 

Bv 

Ss 

% 

=  tan  6. 

Hence  the  acceleration  =  v^r as 

=  PN  .  tan  e 

=  PN  .  tan  NPG 
=  NG. 

Or,  the  acceleration  is  given  by  the  subnormal  NG. 

1 

,  Space  curve Velocity 

Suppose  we  are  given  a  velocity-space  curve  and  we  wish  to  find 
the  space-time  curve. 

Ss 
We  have  v  =  -^ ,  nearly, 

bt 

i.e.  -Ss  =  Bt. 

Draw  the  -,  s,  curve  (fig.  29). 

01 

Space 

Fig.  29. 
Then,  the  time  for  any  distance  is 

given  by  the  area  U7ider  the  curve. 

In  many  problems,  it  is  not  necessary  to  actually  draw  the 

graphs  representing  the  motion  to  scale,  as  we  can  readily 
calculate  the  quantities  we  require.  It  is,  however,  often  very 

helpful  to  sketch  the  graph  roughly. 

Example  (9).  A  tramcar  starts  from  rest  and  accelerates  uni- 
formly for  8  seconds  to  a  speed  o/  10  miles  per  hour.    It  then  runs 
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at  a  constant  speedy  and  finally  is  brought  to  rest  in  iO/eet  with  a 

constant  retardation.  The  total  distance  passed  over  is  250  yards. 
Find  the  value  of  the  acceleration^  the  retardation^  and  the  total 
time  taken. 

k-8->K   t, 

Fig.  30. 

The  velocity-time  curve  is  shewn  in  fig.  30,  where  t^  is  the  time 
during  which  the  speed  is  constant,  and  ̂ 2  is  the  time  of  retardation. 

The  maximum  speed  attained  =  10  miles  per  hour 

=  -\®-  feet  per  second. 

Area  BEC  =  the  distance  passed  over  during  the  retardation,  i.e. 

||x^,=  40, 12x40 

88 
=  5*45  seconds. 

Also,  area  OABC  =  the  total  distance  passed  over,  i.e. 

88  X  8  +  ̂8-  X  ̂ 1  +  40  =  750. 

.-.  ̂ ,  =  (750 -40- 58-7)  ̂ 3 
=  44*3  seconds. 

We  have  then, 
88 

Acceleration  =  ̂  — 3  =  1  -83  feet  per  sec.  per  sec. 

Retardation 

6  X  5-45 
Total  time  taken  =  8  +  44-3  +  545 

=  57*8  seconds. 
L.  E.  D. 

2*69  feet  per  sec.  per  sec. 
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Example  (10).    Using  the  speed-time  curve  for  the  motor  omnibus 
given  on  p.  25,  it  is  required  to  construct  an  acceleration-time  curve. 

We  have  seen  that  the  acceleration  at  any  point  P  is  given  by 

tan  PTN,  where  FT  is  the  tangent  to  the  curve  at  P,  fig.  31. 

Take  the  acceleration  at  20  seconds  from  the  start, 
A  FN 

tan  FTN  =  — 
NT 

=  .^^r—  (measuring  in  divisions). 

Now  each  vertical  division  =  1  mile  per  hour 

=  |§  feet  per  second, 

and  each  horizontal  division  =  1  second. 

Hence  to  get  the  true  acceleration  we  have  to  multiply  the 
A 

value  of  tan  FTN  by  |-|  or  ff . 

.*.  acceleration  at  P  =  .r=-^  x  -— 37-5      15 

=  0'43  ft.  per  sec.  per  sec. 

Take  for  the  acceleration  scale,  1  small  division  =  0*1  ft.  per  sec. 
per  sec,  then  the  acceleration  at  20  seconds  is  given  by  the  point  Q. 

Repeating  this  method  for  times  2,  5,  10,  15,  etc.  seconds,  we 

get  the  acceleration-time  curve  shewn  in  fig.  31. 

Example  (11).  A  body  moves  in  such  a  way  that  its  velocity  in- 
creases uniformly  with  the  distance  passed  over,  and  at  a  distance 

of  bOfeet  the  velocity  is  2^  feet  per  second.  What  is  the  acceleration 
at  the  instant  when  the  body  has  moved  15  feet? 

The  velocity-space  curve  is  given  in  fig.  32.  PN  gives  the 
velocity  at  15  feet.     Draw  PG  perpendicular  to  OP. 
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Speed  in  miles  per  liour 

-*  ro  w 

Acceleration  In  ft  per  sec.  per  sec. 

3—2 
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The  acceleration  =  NG 

-  PNtan  NPG 

=  PN  tan  PON 

=  PN  X  ̂ — 
ON 

/20  X  15y       1 

V     50     J   ""15 24  feet  per  sec.  per  sec. 

15 

Example  (12) 
tances  is  given  in   the   table   below, 

curve,  and  the  speed-time  curve. 

G  50  Space 

Fig.  32. 

The  speed  of  a  ship  in .  knots  at  different  dis- 
Draw  the  acceleration-space 

Speed  (knots) 
10-0 12-3 14-1 15-5 

16-4 17-0 17-0 Distance  (nautical 
miles) 0 i i I 1 H H 

A  nautical  mile=6080  feet,  1  knot=l  nautical  mile  per  hour. 

.'.  1  knot  =  100  feet  per  minute,  approximately. 
The  velocity-space  curve  is  shewn  in  fig.  33.  The  acceleration- 

space  curve  is  shewn  dotted  on  the  same  figure.  This  is  obtained 

by  drawing  subnormals.  The  ordinates  are  each  made  equal  to 
twice  the  subnormals. 
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Speed  in  knots, 
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Scales  :     1  division  =  1  knot  =  \^^  feet  per  second. 

1  division  =  ̂   nautical  mile  =150  feet. 

We  saw  on  p.  31,  that  the  acceleration  was  given  by  v  .  -^ .     If cts 

we  measure  the  distances  in  feet  and  the  velocities  in  feet  per 

second,  the  actual  length  of  the  subnormal  NG  in  divisions  will 

1002 

have  to  be  multipl
ied  

by  :r— r — ^r^ ,  to  obtain  the  true  accelera
- 

loO  X  60^ tion.    Hence  the  scale  for  acceleration  is 

1  division 

300  X  60- 
1 

108 ^rpr^  feet  per  second  per  second. 

We  have  seen  that  the  area  under  the  -,  s,  curve  gives  the 

time.    This  curve  is  shewn  in  fig.  34,  where  the  scale  for  -  is, 

1  division  =  2^ J^  (mile-hour  units). 

Scale  for  distance,  1  division  =  ̂ ^  mile. 

The  dotted  line  shews  the  time-distance  curve. 

This  is  obtained  by  plotting  as  ordinates  the  area  under  the 
1 
-,  s,  curve. V 

The  time  for  distance  8s  =  -  8s. 
V 

Hence,  1  small  square  ̂   -^^  x  -^  hour  =  g^^g-Q  hour. 

In  the  curve  drawn,  1  division  =  40  small  squares 

=  18  seconds. 
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Acceleration  due  to  gravity 

The  number  of  cases  of  motion  in  which  the  acceleration  re- 

mains constant  are  not  numerous  in  Engineering,  as  in  most 

practical  problems  we  either  have  a  constant  velocity  or  a  varying 
acceleration.  One  case  in  which  it  is  usual  to  assume  a  constant 

acceleration  is  that  of  a  body  falling  freely.  Experiment  shews 

that  if  the  distance  from  the  earth's  surface  is  not  large,  then  the 
acceleration  is  nearly  constant  at  any  place  on  the  earth.  It 

varies  slightly  at  diiferent  points  on  the  earth's  surface,  but  it 
will  be  sufficiently  near  for  our  purpose  to  take  the  accelera- 

tion as  constant,  and  equal  to  32  feet  per  second  per  second,  or 

981  cms.  per  second  per  second.  This  assumes  that  the  resistance 

of  the  air  may  be  neglected,  which  is  only  true  in  the  case  of  quite 
small  velocities.  The  numerical  value  of  the  acceleration  is  usually 

denoted  by  the  letter  g. 

We  shall  discuss  this  further  when  we  are  dealing  with  the 

forces  causing  motion  and  the  law  of  gravitation. 

Projectiles 

We  will  now  work  out  a  few  examples  on  projectiles,  making 
the  assumption  mentioned  above,  but  it  must  be  borne  in  mind 

that  the  results  have  very  little  practical  value. 

Example  (13).  A  body  is  projected  tvith  a  velocity  of  ufeet  per 
second  in  a  direction  inclined  at  angle  0  to  the  horizontal.  It  is 

required  to  find  the  total  time  of  Jiight,  the  'maximum  horizontal 
range,  and  the  maximrUm.  height  reached. 

Here  it  is  convenient  to  treat  the  velocity  as  consisting  of 
a  vertical  component  and  a  horizontal  component. 

Horizontal  component  =  u  cos  0. 

Vertical  component      =  u  sin  6. 

If  we  neglect  air  resistance  the  horizontal  component  of  the 
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velocity  will  remain  constant,  and  the  vertical  component  will 
decrease  uniformly  by  g  feet  per 
second  per  second. 

The  path  of  the  body  will  be  as 
shewn  in  fig.  35  and  it  is  evident 

that  the  total  time  of  flight  will 
be  twice  the  time  taken  to  reach 

the  maximum  height.  The  time 

to  reach  the  maximum  height  is 

equal  to  the  time  for  the  vertical 

velocity  to  become  zero 
u  sin  6 

Fig.  35. 

.'.  the  time  of  flight 
2u  sin  6 

The  range  is  given  by  the  distance  moved  horizontally  in  this 
time, 

2usm.  ̂  

(A^ 7.  G u  cos  6  X 

-$- /_«#s
in2^ 

This  is  a  maximum  when  sin  26  =  I,  i.e.  when  0=  45°. 
To  find  the  maximum  height,  we  note  that  since  the  vertical 

velocity  is  decreasing  uniformly,  the  average  vertical  velocity 
u  sin  6 

.'.  the  maximum  height 
u  sin  0     u  sin  0 

u^  sin^  0 M, 

Path  of  the  Projectile.    We  can  easily  find  the  equation  re- 
presenting the  path  of  the  projectile. 
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Let  a;  =  the  horizontal  displacement  at  instant  of  time  t  from 
the  start.    Then 

"  x  =  ucos6.t      (1). 
For  the  vertical  distance, 

Velocity  at  beginning  =  u  sin  6. 

Velocity  at  end  =  (u  sin  0  —  gt). 

Average  velocity  =  J  (2?^  sin  ̂   -  gt). 

.'.  2/  =  I  (2u  sin  0  —  gt) .  t, 

or,  y  =  u^iii6 .  t  —  ̂gt"^   
Eliminating  t  from  (1)  and  (2)  we  get, 

u  sin  6.x      g       a? 
(2). y 

2  u^  cos2  6  ' 
9 

2u^  cos2  6 

a^. 

i.e.  y  —  ̂ '  tan  6 

which  is  the  equation  of  a  'parabola. 

Example  (14).  A  rifle  hullet  is  fired  at  a  target,  on  the  same 

level  as  the  rifle  and  distant  900  yards,  with  a  muzzle  velocity  of 
2000  feet  per  second.  Neglecting  air  resistance,  find  the  angle  of 

elevation.  Find  also  the  limits,  between  the  point  of  firing  and  the 
target,  within  which  a  man  6  feet  high  can  stand  without  being  hit, 
assuming  the  target  at  the  same  level  as  the  ground. 

V  cos  9 

Fig.  36. 

Let  6  =  the  angle  of  elevation,  and  t  =  the  time  of  flight. 

Horizontally  we  have 

2700  =  2000  cos  (9  .  <    (1). 
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Time  to  reach  the  maximum  height  =  -  seconds. 

Retardation  upwards  =  g  ft.  per  sec.  per  sec. 
2000  sin  e      t 

9  2       From  (1)  and  (2),  by  eliminating  t  we  have, 

2000  cos  e  X  4000  sin  (9 
(2). 2700 

32 

/.  2^=1°  14', 
or  ^  =  37  minutes. 

Let  a  =  the  safe  zone,  and  t  =  the  time  for  the  bullet  to  reach  C. 

For  the  vertical  motion, 

/4000  sin  e  -  32^^ 

6  = 
For  the  horizontal  motion, 

2700 -a 

/4000sin^-32A 

V   2   )''       (^^• 

2000cos^.«    (4). 2 

From  (3)  we  get,  by  substituting  for  sin  6  its  value  0-0108, 

6  =  21-6^-16«2, 

21-6-v/21-62-24  xl6 

'  =   —32   
12-55 seconds. 
32 

From  (4)  we  get 

.-.  a  =  2700 -1569 
=  1131  feet. 
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Change  of  Direction 

In  dealing  with  acceleration,  we  have  up  to  the  present  tacitly 
assumed  that  the  direction  of  motion  remained  unchanged,  and 

although  dealing  with  vector  quantities  we  have  merely  considered 

the  magnitude.  We  must  now  consider  the  case  where  the  direc- 
tion changes. 

Suppose,  for  example,  that  a  body  at  a  particular  instant  is 

moving  with  velocity  1.1  in  a  direc- 
tion given  by  OA  (fig.  37)  and  at 

t  seconds  later  it  is  moving  with 

a  velocity  v  and  in  a  direction 

given  by  OB.  Let  us  make  OA 
and  OB  of  such  lengths  that  they 

represent  u  and  v  in  magnitude. 
Now  in  order  to  change  from 

velocity    represented    by   OA    to  Fig.  37. 
velocity  represented  by  OB,  it  is 
obvious  that,  we  must  add  vectorially  a  velocity  represented  by 

AB,  call  it  q.    Then  the  average  acceleration  during  the  time 

=  average  rate  of  change  of  velocity 

_  AB 

~  T 

Circular  Motion 

Let  us  apply  this  to  a  very  common  case,  viz.  that  of  a  body 
moving  in  a  circular  path  with  a  constant  speed.  Suppose  that 

in  time  t  the  body  moves  from  A  to  B  (fig.  38).  Draw  Oa  to  re- 
present the  velocity  at  A,  and  Ob  to  represent  the  velocity  at  B. 

The  added  velocity,  required  to  change  from  velocity  v  at  A  to 

velocity  v  at  B,  is  given  by  AB,  i.e.  the  average  acceleration  for 

time  ht  is  given  by  -k-  . 
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But  since  the  triangles  Oab  and  CAB  are  similar, 
ah      Oa 

AB  ~  CA  * 
Oa.  AB 

.'.  the  acceleration CA.  Bt 

Now 

Fig.  38.     - 

When  St  is  indefinitely  diminished  89  becomes  zero  also,  and  we 

see  that  the  acceleration  is  always  axiting  towards  the  centre  C  and 

is  of  magnitude 
1^ 

This  is  an  important  result  and  should  be  remembered. 

Example  (15).  A  motor-car  travelling  at  \0  miles  per  hour 
takes  a  corner  of  10  yards  radius.  What  is  the  acceleration  of  the 

car  in  feet  per  second  per  second? 

The  speed  =  1^  feet  per  second. 

The  acceleration 

60 

r 

10^  X  88^ 

602 

X  —  feet  per  sec.  per  sec. 

=  7  '2  feet  per  sec.  per  sec. 
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Example  (16).    The  crank  of  an  engine  has  a  radius  of  9  inches 
and  is  rotating  at  300  revolutiaiis  per  minute,  what  is  the  linear 

speed,  and  the  acceleration  of  tJie  crank  pin  ? 
27r  X  300 

The  angular  velocity  =  — ^ — 

=  IOtt  radians  per  second. 

The  linear  speed  of  the  crank  pin :=107rx^ 

=  23-6  feet  per  second. 

The  acceleration  of  the  crank  pin  towards  the  centre  of  rotation 

9 

740  feet  per  sec.  per  sec. 

Relative  Velocity 

Up  to  the  present,  in  dealing  with  motion,  it  has  been  assumed 
that  we  have  some  fixed  starting  point  for  reference,  and  that 

we  have  measured  our  displacement  from  this  point.  In  actual 

practice,  a  little  thought  will  shew  that  we  have  no  really  fixed 

point,  but  so  far  as  we  know  any  body  or  point  may  be  moving. 

It  is  frequently  the  case  that  we  imagine  a  point  on  the  earth's 
surface  as  at  rest,  but  in  reality  this  is  moving.  Again,  take  the 

case  of  an  engine  on  a  steamer  or  motor-car;  when  we  talk  about 
the  speed  of  any  moving  part  of  the  engine,  such  as  the  piston,  in 

estimating  its  speed  we  usually  imagine  the  steamer  or  car  at  rest. 

In  other  words,  in  dealing  with  the  motion  of  a  body  we  do  not 

really  know  anything  about  the  true  motion  but  only  the  motion 
refative  to  some  other  body  which  we  imagine  at  rest.  Thus  all  the 

motions  we  deal  with  are  really  only  relative  motions.  This  being 
so,  it  will  be  as  well  to  carefully  define  what  we  mean  by  relative 

motion.  Suppose  we  have  a  body  or  a  point  A  moving  relatively 
to  another  body  or  point  B,  then  the  relative  motion  of  A  with 
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respect  to  B  is  the  motion  which  A  appears  to  have  when  we  view 

it  from  B.  Take  as  an  example  two  trains  passing  one  another 

on  parallel  tracks.  Suppose  the  train  A  is  moving  at  10  miles  per 
hour  and  the  train  B  at  1 5  miles  per  hour.  Then  to  a  person  in  train 

A  viewing  train  B  the  latter  would  appear  to  be  moving  with  a 

velocity  of  (15  —  10)  miles  per  hour,  i.e.  the  relative  velocity  of  B  to 

A  is  5  miles  per  hour.  To  a  person  situated  in  B  and  viewing  A's 
motion  the  latter  will  appear  to  be  (10-  15),  i.e.  —  5  miles  per 
hour,  or  the  relative  velocity  is  5  miles  per  hour  in  the  opposite 
direction. 

Now  let  us  see  how  we  can  always  measure  relative  velocity. 
It  is  obvious  that  if  we  give  both  bodies  the  same  velocity  their 

relative  velocities  will  be  unaltered,  e.g.  the  two  trains  both  have 

the  velocity  of  the  earth,  but  this  does  not  affect  their  relative 
velocities. 

Suppose,  now,  a  body  A  is  moving  as  shewn  in  fig.  39,  with 

velocity  u,  a  body  B  is  moving  with 

velocity  v,  and  we  wish  to  find  the 
velocity  of  B  relative  to  A.  Give  to 

both  bodies  a  velocity  equal  and  op- 
posite to  that  of  A.  This  brings  A  to 

rest,  but  does  not  aflfect  the  relative 

velocity.  It  is  obvious  that  B's  resul- 
tant velocity  will  be  the  velocity  of  B  ,   ^ 

relative  to  A.     This  is  shewn  by  bA;  in  A      vel.  u 

fig.  39,  where  ̂ n  represents  the  velocity  ^^'     ' 
of  B,  and  nk  represents  the  velocity  of  A  reversed.    Looking  at 

triangle  Bn>fc,  we  see  that  kn  represents  the  velocity  of  point  A, 
and  we  have 

Bn  =  kn-\-  Bk. 

Or  remembering  that  we  are  dealing  with  vectors  : 

The  velocity  of  the  body  B  is  equal  to  the  velocity  of 
the  body  A  plus  the  relative  velocity  of  B  to  A. 
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Similarly  we  may  state  : 

The  velocity  of  f<  is  equal  to  the  velocity  of  B  'plus  the  relative 
velocity  of  ̂  to  B. 

Two  points  rigidly  connected.  Instead  of  A  and  B  being 

two  bodies,  they  may  be  two  points  in  one  rigid  body.  In  this 
case  the  relative  motion  is  given  in  direction,  since  it  must  be 

perpendicular  to  the  line  joining  the  two  points.  If  this  were  not 
so,  there  would  be  a  component  of  relative  velocity  along  AB,  or 
the  points  A  and  B  must  be  either  closing  in  or  separating,  which 

is  contrary  to  the  assumption  that  they  are  rigidly  connected. 
This  is  shewn  in  fig.  40. 

Relative  velocity 

Fis.  40. 

Another  way  of  stating  this  is  by  saying  that  the  relative 
motion  of  B  to  A  is  one  of  rotation  of  B  about  A.  If  to  is  the 

angular  velocity  of  B  about  A,  then  the  relative  velocity  of  B  to 
A  =  « .  AB. 

Example  (17).  The  maximum  speed  of  an  airship  in  still  air  is 
40  miles  per  hour.  What  is  the  shortest  tim,e  in  which  the  ship  can 

travel  a  distance  q/"  10  whiles  due  norths  at  a  constant  altitude^  if 
there  is  a  north-west  wind  blowing  a^  18  miles  per  hour?  In  what 
direction  will  a  flag  attached  to  the  airship  fly  ? 
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The  actual  velocity  of  the  airship  will  be  equal  to  the  vector 
sum  of  the  velocity  of  the  wind  and  the  velocity  of  the  ship  rela- 

tive to  the  wind,  i.e.  the  velocity  in  still  air. 
N 

Scale 
l"  =  10m.p.h. 

S  A 

Fig.  41. 

Draw  OA  in  a  direction  south-east  to  represent  to  some  scale  the 
velocity  of  the  wind  (18  miles  per  hour).  Take  a  length  AB  to 
represent,  to  the  same  scale,  the  velocity  of  the  ship  in  still  air. 
Let  this  cut  the  north  line  through  O  in  the  point  B. 
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Then  OB  represents  the  actual  velocity  of  the  airship. 

This  by  measurement  =  25*2  miles  per  hour. 

.'.  The  shortest  time  to  travel  10  miles  due  north 
10x60     .     , 

=  23*8  minutes. 

The  flag  will  fly  in  the  direction  of  the  resultant  wind  on  it, 

that  due  to  its  motion  with  the  airship,  and  the  north-west  wind. 

This  is  given  by  the  vector  sum  of  BO  and  OA,  i.e.  BA. 

.".  The  flag  flies  in  the  direction  BA,  which  is  inclined  to  the 
north  at  an  angle  of  19°. 

Example  (18).  The  crank  of  a  steam-engine  is  9  inches  and  is 
rotating  a^  360  revolutions  per  minute.  The  connecting  rod  is  30 

inches  long.  Find  the  velocity  of  the  piston  when  the  crank  is  in 
the  position  shewn  in  the  figure  below. 

OTT 

>d 

— Q 

.    Fig.  42. 

In  6g.  42,  CP  represents  the  crank,  PD  the  connecting  rod,  and 
DC  the  line  of  stroke.    The  crosshead  D  is  fixed  to  the  piston  and 
will  therefore  have  the  same  motion  as  the  piston. 

The  velocity  of  P  -  wr 
27rx360       9  ̂    , 

=  — ^.^ —  X  —r  teet  per  second 
60  12         - 

=  97r  feet  per  second. 

Let  us  give  to  D  and  P  a  velocity  equal  and  opposite  to  that  of 

P.    This  brings  P  to  rest  and  D's  resultant  motion  will  be  the 
L.  E.  D.  4 
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relative  velocity  of  D  to  P,  which  must  be  perpendicular  to  DP. 

Draw  po  to  represent  a  velocity  equal  and  opposite  to 

that  of  P.  Draw  od  parallel  to  DC,  and  2>d  perpendi- 
cular to  PD.  It  is  obvious  that  opd  is,  a  triangle  of 

velocities,  and  that  od  represents  the  velocity  of  D, 
and  pd  the  velocity  of  D  relative  to  P. 

Velocity  of  D 

OtT         ~op~Qb 
i.e.  the  velocity  of  D  =  18'3  feet  per  second. 

—  =  ̂   (by  measurement), 

Rolling  wheel 

A  wheel  rolls  along  a  plane,  without  sliding,  at  a  constant  rate; 

it  is  required  to  find  the  velocity  of  any  point  A  on  the  rim. 

Let  V  =  the  velocity  of  the  centre  C,  w  =  the  angular  velocity  of 
the  wheel,  and  r  =  the  radius  of  the  wheel. 

V77777777777777777777777777777777777r 

Fig.  44. 
For  one  revolution  of  the  wheel  the  centre  C  moves  a  distance 

equal  to  the  circumference  of  the  wheel,  i.e.  the  speed  of  C  is  the 

same  as  the  speed  of  a  point  on  the  circumference  of  the  wheel. 
.*.  V  =  con- 

The  velocity  of  A  =  the  vector  sum  of  the  velocity  of  C,  and  the 
relative  velocity  of  A  to  C. 

The  latter  equals  cor  and  is  perpendicular  to  CA. 

In  fig.  44  let  AE  represent  the  velocity  of  C,  and  EF  represent 
the  velocity  of  A  relative  to  C. 
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The  actual  velocity  of  A  is  represented  by  AF. 

.".  The  velocity  of  A  =  2o>r .  cos  6 
=  (o .  PA. 

It  is  seen  from  the  figure  that  A F  is  at  right  angles  to  PA. 

.'.  The  point  A  is  for  the  instant  turning  about  the  point  P  with 
an  angular  velocity  w. 

Examples.    Chapter  II 
1.  Express  the  following  in  metres  per  second:  (1)  The  speed  of  a  runner 

who  does  100  yards  in  lOi  seconds.  (2)  The  speed  of  a  train  running  at 
60  miles  per  hour.  (3)  The  speed  of  a  point  on  the  rim  of  a  flywheel  7  feet 
in  diameter  rotating  at  250  revolutions  per  minute. 

2.  A  popular  method  of  estimating  the  distance  away  in  miles  of  a  flash 
of  lightning  is  to  divide  the  time  in  seconds  between  the  flash  and  the  first 
sound  of  the  accompanying  thunder  by  5.  What  velocity  of  sound  in  feet 

per  second  does  this  assume  ? 

3.  The  speed  of  a  ship  used  to  be  measured  by  dropping  overboard  a  log 
attached  to  a  line  and  measuring  the  speed  with  which  the  line  ran  out,  it 
being  assumed  that  the  log  remained  stationary.  The  line  was  divided  into 
sections  of  equal  length.  Find  the  length  of  a  section  in  order  that  the  number 
of  sections  running  out  in  28  seconds  should  be  equal  to  the  speed  of  the  ship 
in  knots. 

1  knot  =  6080  feet  per  hour. 

4.  The  data  for  a  distance-time  curve  of  a  train  starting  from  rest  is 
tabulated  below.    Plot  the  curve  and  from  it  deduce  the  speed-time  curve. 

Distance  x  10-=^ in  feet 
0 

0-6 2-0 4-4 

7-5 11-0 14-8 
19-0 Time  in  minutes 0 1 2 3 4 5 6 7 

Distance  x  10"=^ in  feet 
23-0 

27-8 32-5 37-6 

43 

48-4 
54-2 Time  in  minutes 8 9 

10 
11 12 

13 
14 

4—2 
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6.  A  cam  in  the  form  of  a  circular  disc  is  keyed  eccentrically  on  a  hori- 
zontal shaft  which  rotates  at  120  revolutions  per  minute.  The  diameter  of 

the  disc  is  6  inches  and  its  centre  is  one  inch  from  the  axis  of  the  shaft. 

A  rod  presses  against  the  edge  of  the  disc,  and  is  constrained  to  m.ove  vertically 
in  the  plane  of  the  disc  along  a  line  passing  through  the  axis  of  the  shaft. 

Draw  the  displacement-time  curve  of  the  rod  for  one  revolution  of  the  shaft, 
and  from  this  curve  deduce  approximately  the  velocity-time  curve,  stating  in 
each  case  the  scales  adopted.  The  end  of  the  rod  pressing  on  the  disc  may 
be  considered  a  point. 

6.  The  distance  (s)  of  the  piston  of  an  engine  from  the  end  of  its  stroke 

is  given  by  the  equation,  s  =  6-5  -  6cos25f -O'Scos  50t,  where  s  is  in  feet 
and  t  is  the  time  in  seconds.  Find  the  velocity  at  the  times  given  by 

t=^V  second,  t=^  second,  and  f  =  |^  second. 

7.  A  point  moves  uniformly  round  a  circle  of  1  metre  radius,  makihg 
100  revolutions  per  minute.  Express  its  linear  velocity  in  feet  per  secdlid, 
and  its  angulur  velocity  in  radians  per  second. 

The  wheels  of  a  motor-car  are  28  inches  in  diameter.  How  many  revolutions 
per  minute  does  each  wheel  make  when  the  car  is  running  at  35  miles  per  hour? 

8.  A  pulley  wheel  of  20  inches  diameter  is  connected  by  a  belt  to  a  flywheel 
of  5  feet  diameter,  which  is  rotating  at  280  revolutions  per  minute.  What  is 
the  speed  of  the  belt  if  there  is  no  slipping? 

Find  tjie  speed  of  rotation  of  the  pulley  (1)  in  revolutions  per  minute, 

(2)  in  radians  per  second. 

0.  The  spiral  grooves  in  a  rifle  barrel  make  one  complete  turn  in  10  inches. 
Find  the  speed  of  rotation  of  a  bullet  when  it  leaves  the  muzzle  with  a  velocity 
of  2500  feet  per  second. 

10.  A  fixed  screw  of  ejffective  diameter  2  inches  has  3  threads  per  inch, 
A  nut  on  the  screw  is  rotated  at  300  revolutions  per  minute.  What  is  the 

speed  of  sliding  of  the  nut  in  feet  per  second  ? 

11.  At  a  particular  instant  a  motor  car  is  travelling  at  a  speed  of  10  miles 
per  hour,  when  it  starts  accelerating  at  a  uniform  rate  of  2  feet  per  second 

per  second.    Shew  that  the  distance  in  the  20th  second  is  53-7  feet. 

12.  A  train  starting  from  rest  at  one  station  comes  to  rest  at  the  next 
station  6  miles  off  in  10  minutes,  having  first  a  uniform  acceleration,  then  a 
uniform  velocity  for  8  minutes  and  then  a  uniform  retardation ;  shew  that 
the  greatest  velocity  attained  is  40  miles  an  hour. 
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13.  The  table  below  gives  the  speeds  at  different  times  of  an  electric  train 

running  between  two  stations.  Plot  the  speed-time  curve  and  from  it  find  the 
total  distance  passed  over,  the  mean  speed,  the  initial  acceleration,  the  ac- 

celeration at  the  end  of  40  seconds,  and  the  final  retardation. 

Speed  in  miles 
per  hour 

0 
11-2 

19  8 28 30 

29-2 

27 

24-8 23-8 

21-4 

8-5 
0 

Time  in 
seconds 0 10 20 

40 
50 

60 
90 

120 130 
150 

160 
166 

14.  The  velocity  (v)  of  the  piston  of  an  engine  at  any  time  is  given  by  the 

equation,  v  =  10*47  sin  25 «  + 0-87  sin  50 f,  where  v  is  in  feet  per  second  and  t 
is  in  seconds.  What  is  the  equation  giving  the  acceleration  of  the  piston  in 
terms  of  the  time  ? 

15.  The  velocity  of  the  ram  of  a  slotting  machine  for  different  positions 
during  the  cutting  and  return  stroke  is  given  in  the  table  below.  Plot  the 

velocity-space  curve,  and  from  it  deduce  the  acceleration-space  curve. 
The  length  of  the  stroke  is  9  inches. 

Fraction  of  stroke 
in^th 

0 1 2 3 4 5 6 7 8 

Velocity  in  ft. /sec. 
Cutting  stroke 

0 14 21 24 

26 

27-5 

29 

29-5 

30 

Velocity  in  ft./sec. 
Keturn  stroke 0 

19 

32 
42 

49 55 

59 

61 62 
Fraction  of  stroke 

in  iVth 
9 

10 11 
12 13 14 

15 
16 

Velocity  in  ft./sec. 
Cutting  stroke 

29-5 

29 

27-5 

26 

24 
21 14 0 

Velocity  in  ft./sec. 
Return  stroke 61 

59 
55 

49 42 
32 

19 

0 

16.  A  body  moves  along  a  straight  path  in  such  a  way  that  its  velocity, 
in  feet  per  second,  is  related  to  its  displacement,  in  feet,  from  a  fixed  point 

by  the  equation,  v^=lS5-Q0s^.  Plot  the  v,  s,  curve  for  the  complete 
motion,  and  from  it  deduce  the  acceleration-space  curve. 

Draw  also  the  space-time  curve. 
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17.  A  stone  is  dropped  from  a  balloon  which  is  rising  with  acceleration  a, 
and  ti  seconds  after  this  a  second  stone  is  dropped.  Prove  that  the  distance 
between  the  stones  at  a  time  t  after  the  second  stone  is  dropped  is 

^{a  +  g)t^{t^  +  2t). 

18.  A  stone  falling  freely  under  gravity  is  observed  to  pass  from  top  to 
bottom  of  a  window  8  feet  high  in  i  second.  Find  the  distance  from  the  top 
of  the  window  to  the  point  from  which  the  stone  fell. 

19.  A  shell  is  fired  so  that  at  the  highest  point  of  its  flight  it  just  passes 

over  a  mountain  half-a-mile  high  and  distant  5  miles  from  the  point  of  pro- 
jection. Shew  that  the  horizontal  component  of  the  velocity  of  projection  is 

to  the  vertical  component  in  the  ratio  of  5  to  1,  and  find  the  values  of  these 
components. 

20.  Water  is  issuing  from  a  fire-hose  nozzle  with  a  speed  of  120  feet  per 
second.  The  jet  is  to  pass  through  a  window  which  is  distant  35  feet  vertically 
and  30  feet  horizontally  from  the  nozzle.  What  must  be  the  inclination  of 
the  nozzle  if  the  jet  when  it  reaches  the  window  is  (1)  to  be  rising,  (2)  to  be 
falling  ? 

21.  A  body  at  a  particular  instant  was  moving  due  east  with  a  velocity 

of  5  feet  per  second,  and  at  a  later  time  it  was  moving  east-north-east  with  a 
velocity  of  8  feet  per  second.  Find,  graphically,  the  change  of  velocity  in 
magnitude  and  direction. 

If  the  time  which  elapsed  between  the  first  and  second  velocities  was 
7  seconds,  what  was  the  magnitude  of  the  average  acceleration  during  this 
time? 

22.  Water  is  flowing  round  a  small  pipe  which  is  bent  in  an  arc  of  a  circle 

of  18  inches  radius,  with  a  speed  of  10  feet  per  second.  What  is  the  ac- 
celeration of  the  water  while  passing  round  the  bend  ? 

23.  A  cutter  can  be  rowed  in  still  water  at  2  knots.  It  is  rowed  across 

a  river  400  yards  broad,  which  is  flowing  at  the  rate  of  1|  knots,  starting  from 
one  side  and  reaching  the  opposite  bank  100  yards  further  up  stream.  Find 
the  least  time  in  which  the  passage  can  be  made,  and  the  direction  in  which 
the  boat  will  point  while  going  across.  Find  also  the  least  time  and  the 
direction  for  the  return  journey. 

1  knot =6080  feet  per  hour. 

24.  A  train  A  moving  with  a  constant  speed  of  30  miles  per  hour  is  passing 
another  train  B  which  is  at  rest  on  a  parallel  track.  At  the  instant  when  the 

engines  of  the  two  trains  are  opposite  one  another,  the  train  B  starts  with  a 
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constant  acceleration  of  2  feet  per  second  per  second.    What  length  of  time 
will  elapse  before  the  two  trains  again  occupy  the  same  relative  position  ? 

If  the  train  B  is  100  yards  long,  at  what  distance  from  the  station  will  it 
just  have  completely  overtaken  the  train  A  ? 

25.  Two  ships,  A  and  B,  start  simultaneously  from  the  same  point.  A 
steams  north-east  at  15  knots,  and  B  steams  south  at  10  knots.  Shew  that 
the  line  AB  moves  parallel  to  a  fixed  direction,  and  find  at  what  rate  the 
distance  AB  increases. 

After  one  hour's  steaming  A  changes  its  course  to  south ;  after  what  time 
will  it  be  due  east  of  B?  At  this  instant  it  again  changes  its  course  and  steams 

west.  At  what  distance  from  B  will  it  cross  B's  course?  The  distances  are 
to  be  reckoned  in  sea  miles. 

26.  Two  straight  railway  tracks,  OA  and  OB,  intersect  at  O  and  the  angle 

AOB  is  60°.  A  train,  P,  is  running  in  the  direction  OA  at  40  miles  per  hour, 
and  another,  Q,  in  the  direction  OB  at  25  miles  per  hour.  Find  the  magnitude 
and  the  direction  of  the  velocity  of  Q  relative  to  P. 

27.  A  gun  pointed  at  an  inclination  d  to  the  horizontal  is  mounted  on  a 
carriage  which  can  run  on  a  horizontal  rail.  If  the  shot  leaves  the  gun  with 
a  relative  velocity  v,  the  gun  recoiling  along  the  rail  with  velocity  u,  shew 
how  to  find  the  range  on  a  horizontal  plane  through  the  point  of  projection, 
treating  the  shot  as  a  projectile  in  vacuo.  By  how  much  is  the  range  shortened 
by  the  recoil  ? 

If  i;  =  1000  and  w=10  feet  per  second,  find  whether  the  range  is  greater 

for  ̂   =  45°  or  ̂   =  46°. 
28.  The  driving  wheels  of  a  locomotive  are  7  feet  in  diameter.  How  many 

revolutions  does  each  wheel  make  in  a  minute  when  the  locomotive  is  running 
at  50  miles  per  hour  ? 

O  is  the  centre  of  one  of  the  wheels,  A  its  point  of  contact  with  the  rail, 
and  P  a  point  on  the  rim.  Find  the  magnitude  and  direction  of  the  velocity 

of  the  point  P  in  each  of  the  positions  in  which  the  angle  AOP  is  120°. 
29.  A  ladder  30  feet  long  rests  with  one  end  on  a  vertical  wall  and  the  other 

end  on  the  ground  at  a  distance  of  12  feet  from  the  wall.  The  lower  end 

begins  to  slide  horizontally  away  from  the  wall  with  a  velocity  of  1-5  feet 
per  second.  Determine  graphically  the  velocity  of  the  end  on  the  wall,  and 
the  relative  velocity  of  the  two  ends. 

30.  A  cable  drum  3  feet  in  diameter,  with  side  flanges  5  feet  in  diameter, 
rests  on  the  road.  The  free  end  of  the  cable,  which  comes  from  the  under- 

side of  the  drum,  is  pulled  forward  with  a  velocity  of  2  feet  per  second.  How 
long  will  it  take  to  wind  up  30  feet  of  cable,  and  how  far  will  the  drum  have 
rolled  during  this  time  ? 
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31.  A  slider  is  driven  along  a  straight  guide  by  means  of  a  crank  and 

connecting  rod.  The  length  of  the  crank  is  3  inches  and  the  connecting-rod 
12  inches.  The  line  of  stroke  of  the  slider  is  5  inches  below  the  centre  of  the 

crank  shaft.  The  crank  rotates  uniformly  at  40  revolutions  per  minute.  Draw 
a  line  diagram  of  the  mechanism  to  a  scale  ̂   full  size,  and  determine  the 
length  of  stroke,  the  times  of  travel  of  the  slider  during  the  forward  and  return 
strokes,  and  the  velocity  of  the  slider  at  the  middle  of  each  of  the  two  strokes. 

32.  The  figure  below  shews  two  sliders  B  and  C  with  the  same  line  of 
stroke  BCO.  They  are  driven  from  the  same  shaft  by  means  of  two  cranks 
OA  and  OD.  If  the  crank  shaft  rotates  at  75  revolutions  per  minute,  find 

graphically  for  the  position  shewn  the  relative  velocity  of  B  and  C. 

0A  =  6",  AB^12",  00  =  4",  DC  =  8". 
A 

Fig.  45. 



CHAPTER  III 

Linear  Momentum 

In  the  last  chapter  we  dealt  with  motions,  but  we  did  not  con- 
sider how  these  motions  were  produced  or  changed.  We  have 

now  to  investigate  the  causes  of  motion,  and  for  this  purpose,  we 

shall  use  two  principles  upon  which  the  whole  subject  of  mechanics 

depends : 
(1)  The  Conservation  of  Momentum. 

(2)  The  Conservation  of  Energy. 

We  will  consider  the  first  here,  postponing  the  second  for  a 

later  chapter.  First  of  all  we  must  introduce,  and  make  ourselves 

quite  familiar  with,  a  new  physical  quantity,  viz.  Momentum. 
It  is  really  the  product  of  two  physical  quantities  and  we  may 
define  it  thus  : 

The  Momentum  of  a  body  is  equal  to  the  product  of  the  mass  and 

the  velocity  with  which  it  moves. 

If  a  body  of  mass  m  lbs.  is,  at  a  particular  instant,  moving  with 

a  velocity  of  v  feet  per  second,  then  the  body  is  said  to  possess 

a  quantity  of  momentum  equal  to  'tnv  ft.  lb.  sec.  units. 
Sometimes  we  shall  be  considering  the  change  of  momentum  of 

a  single  body,  and  at  others  we  shall. find  it  convenient  to  think 
of  the  increase  or  decrease  of  the  resultant  momentum  of  a  system, 

or  it  may  be  the  component  of  momentum  in  any  particular  direc- 
tion. Since  velocity  is  a  vector  quantity  so  momentum  must  be 

considered  a  vector  quantity,  the  direction  being  that  of  the 
velocity. 

The  quantity  of  momentum  of  a  oody  or  system  may  be  changed 
in  various  ways  : 

(1)  The  mass  may  remain  constant  and  the  velocity  be  changed 

in  magnitude,  e.g.  a  train  moving  along  a  straight  track  may  in- 
crease or  decrease  its  velocity. 
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(2)  The  mass  may  remain  constant  and  the  velocity  be  changed 
in  direction  without  any  change  in  magnitude,  e.g.  the  speed  of 
the  train  may  keep  constant,  but  the  direction  may  be  changed. 

(3)  The  mass  may  be  changing  with  the  velocity  remaining 

constant,  e.g.  a  locomotive  picking  up  water  from  a  trough  along 
the  track. 

(4)  Any  combination  of  the  above  three,  e.g.  a  rocket  when 
fired.  Here  the  mass  is  changing  as  the  products  of  combustion 

are  blown  out,  and  also  the  velocity  may  be  changing  both  in 
magnitude  and  direction. 

We  will  now  state  the  laws  or  principles  of  momentum*. 

1st  Law.  In  any  body  or  system  the  total  momentum 
remains  constant  unless  the  body  or  system  is  acted  upon 
by  some  external  force. 

2nd  Law.  If  there  is  a  change  of  momentum,  then  the 
force  producing  it  is  proportional  to  the  rate  of  change 
of  momentum  and  acts  in  the  same  direction. 

'     ThQ  first  law  introduces  a  new  term,  viz.  Force,  which  may  for 
the  present  be  defined  thus  : 

Force  is  that  which  produces  or  tends  to  produce  a  change  of 
momentum. 

The  law  is  the  result  of  observation.  If  the  momentum  of 

a  body  changes  we  immediately  look  for  some  cause,  and  this 

cause  we  call  force.  For  example,  in  cycling  we  may  find  that 

our  velocity  has  increased  in  magnitude,  or  our  direction  of 

motion  may  be  changed,  and  we  immediately  look  for  some  cause. 

It  may  be  that  a  wind  has  sprung  up  and  is  exerting  a  force  in 

the  direction  of  motion,  thus  increasing  our  velocity,  or  it  may 
be  that  we  have  met  an  obstacle  in  the  form  of  a  stone  with  the 

result  that  a  side  force  has  been  exerted  and  this  has  changed 
our  direction. 

The  second  law  is  really  based  upon  experimental  observation, 
*  See  Preface. 
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and  provides  a  means  of  measuring  the  force  which  is  producing 

a  change  of  momentum. 

Let  us  make  the  matter  clear  by  taking  a  simple  concrete  case. 

Suppose  we  have  a  mass  M  acted  upon  by  a  constant  force  F,  and 
that  this  force,  during  a  time  t,  produces  an  increase  of  velocity 
from  Vi  to  fg. 

— >^ 1 
  >v 2 

'-^ 

M M 

///////////y/y 
^  /  /  /  /  / 

Fig.  46. 

The  momentum  at  the  beginning  of  the  time=:  \Av^, 

The  momentum  at  the  end  of  the  time  =  M^g- 

.'.  the  change  of  momentum  =  M-yg—  Mv^. 
From  the  2nd  law, 

Foe    — ^   ^. t 

.*.  we  may  write. 
/MVg—  M-yA 

^^    M^.^,-^       („), t) 

where  A;  is  a  constant^  the  value  of  which  depends  upon  the  units 
which  we  adopt  for  measuring  the  force. 

Absolute  System  of  Units 

The  unit  force  is  that  force  which  produces  unit  change  of  mo- 
mentum in  unit  time. 

Taking  M  =  1,  -yg  -  '^i  =  1)  ̂^^  t  =  l,  we  have, 

I  =k  .  —^  ,  i.e.  ̂   =  1. 

Hence  with  this  unit  we  may  write, 

t 

or,  the  force  is  equal  to  the  change  of  m.omentum  in  unit  time. 
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In  the  F.p.s.  system  the  absolute  unit  of  force  is  often  called 

the  Poundal,  and  is  that  force  which  acting  on  a  mass  of  1  lb. 

produces  a  change  of  velocity  of  1  foot  per  second  in  one  second. 

In  the  c.G.s.  system  the  absolute  unit  of  force  is  called  the 

Dyne,  and  is  that  force  which  acting  on  a  mass  of  1  gram  pro- 
duces a  change  of  velocity  of  1  centimetre  per  second  in  one 

second. 

Gravitation  Units 

Newton  discovered  that  any  two  masses  attract  one  another 

with  a  force  which  varies  directly  as  the  product  of  the  masses, 

and  inversely  as  the  square  of  the  distance  between  them. 

Thus,  there  is  a  force  acting  between  every  body  and  the  earth 
and  this  force  is  called  the  force  due  to  gravity.  For  any  particular 

body,  this  force  is  not  really  constant  except  for  a  definite  position, 

but  near  the  earth's  surface  the  variation  is  so  small  that  it  may 
be  neglected.  The  force  due  to  gravity  on  a  body  is  called  the 

weight  of  the  body. 

We  may  take  the  unit  weight,  i.e.  the  force  of  gravity  on  unit 
mass,  to  be  our  unit  of  force.  This,  as  noted  before,  will  not 

strictly  be  constant  unless  we  specify  a  definite  position  or  place 

on  the  earth's  surface.  The  position  is  generally  stated  to  be  at 
Greenwich,  where  the  value  of  the  acceleration  of  a  freely  falling 

body  is  32-19  feet  per  second  per  second,  or  981  cms.  per  second 
per  second. 

Denote  the  numerical  value  of  this  acceleration  by  g. 

If  we  have  M  lbs.  of  mass  falling  freely  the  acceleration  is 

g  feet  per  second  per  second,  i.e.  in  unit  time  there  is  a  change  of 

velocity  equal  to  g,  and  therefore  a  change  of  momentum  M^  units. 

The  force  acting  is  M  lbs.  wt. 

From  (a)  above,  we  have  : 
M=k.M.g. 

9 
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Hence  with  this  unit  we  write, 

^_M{v.,-Vi) 

or,  Force  equals  the  change  of  momentum  per  unit  time  divided 

h9' 
In  what  follows  we  shall  generally  use  the  absolute  unit  of  force 

when  working  problems,  and  if  necessary,  we  can  express  the 
forces  at  the  end  in  terms  of  weight. 

It  is  obvious  that : 

The  absolute  unit  of  force 

=  -  {Units  of  weight}, 

or  1  lb.  wt.  =32  poundals, 

and  1  gram  wt.  =981  dynes. 

It  is  very  important  to  distinguish  between  mass  and  weight. 

As  we  have  previously  stated,  m,ass  is  merely  the  quantity  of 

matter,  and  is  a  scalar  quantity ;  weighty  on  the  other  hand,  is 

Si.  force  J  and  is  a  vector  quantity  (its  direction  being  always  towards 
the  centre  of  mass  of  the  earth). 

We  are  often,  in  problems,  given  the  weight  of  a  body,  when 
what  we  really  want  is  the  mass.  This  is  due  to  the  fact  that 

the  commonest  way  of  comparing  masses  is  by  weighing.  Since 

in  any  one  place  the  rate  of  change  of  velocity  due  to  gravity  is 

constant,  it  follows  that  the  force  due  to  gravity  will  only  vary 
with  the  mass.  If  we  use  gravitation  units  for  force,  the  weight 
and  mass  are  numerically  equal,  but  it  must  not  be  forgotten  that 
they  are  two  entirely  different  physical  quantities.  The  mass  of 

a  body  is  constant  no  matter  where  the  body  may  be,  but  on  the 

other  hand,  the  weight  will  vary  with  the  distance  of  the  body 
from  the  centre  of  the  earth. 
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Suppose,  for  example,  we  use  a  spring  balance  for  measuring 
our  weight,  and  that  this  spring  balance  is  calibrated  at  the 
equator.    Here  using  foot,  second  units, 

^  =  32-091. 
Now  suppose  we  use  the  spring  balance  to  weigh  stuff  at  one 

of  the  poles.    Here 

^  =  32-252. 
The  spring  balance  requires  the  same  force  to  produce  a  definite 

reading  wherever  it  may  be,  hence  for  the  same  weight,  the  quan- 
tities of  stuff  at  the  equator  and  poles  will  be  in  the  ratio  of 

32-252:  32-091, 

,    „      ,  32-252-32-091      ,„„  ^  , I.e.  we  shall  measure      q^TaoI    x  100  per  cent.,  or  ̂   per 32*091 

cent,  more  stuff  at  the  equator  than  we  do  at  the  poles. 

Example  (1).     A  cage  weighing  2  J  tons  is  raised  and  lowered 
in  a  coal  mine  shaft  by  a  steel  cable.    Find  the  tension  in  the  cable, 

(1)  When  the'hage  is  raised  or  lowered  with  a  constant  velocity, 

(2)  When  the  cage  is  lowered  with  the  speed  increasing  uniformly 
from  0  to  1000  feet  per  minute,  in  the  first  bOfeet. 

Let  T  be  the  tension  in  the  cable  in  poundals,  just  above  the 

cage.    Then  the  resultant  force  acting  on  the 
cage  is, 

(T- 2-5  X  2240  x^)pdls. 
(1)  If  the  velocity  is  constant,  there  is 

no  change  of  momentum. 

.*.  T-2-5  X  2240x^  =  0, 

or  T  =  2 J  tons  wt. 

(2)  The  resultant  force  downwards 

=  (2-5  X  2240  x^-T)pdls. 

The  average  velocity = 500  feet  per  minute.      2-5 
The  time  to  move  50  feet 

-^  minute. 

2240  xg  pdts 

Fig.  47. 
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The  change  of  momentum  downwards  per  second 
2-5  X  2240  X  1000 

63 

From  the  2nd  Law, 

2-5  X  2240  x^-T 

1 
177 

X  60  X  60     • 
2-5  X  2240  X  10000 

or 

60  X  60 

T  =  2-5  X  2240  (32  -  2-8)  pdls. 
2-5  X  2240x29-2., —  lbs.  wt. 

32 

2-28  tons  wt. 

Example  (2).  A  train  weighing  300  tons  is  being  pulled  up 
an  incline  of  1  in  150  bi/  an  engine 
which  is  exerting  a  pull  in  the 

coupling  of  16  ions  wt.  If  the 
tractive  resistance  is  constant  and 

equal  to  -^  of  the  weight,  find  the 
acceleration  in  feet  per  second  per 

second.  ^^^'  ̂^' 

Let  R  be  the  resistance  in  tons  wt.  and  P  be  the  pull  in  the 

coupling  in  tons  wt. 

The  resultant  force  up  the  incline  =  (p  —  R  -  300  sin  6)  tons  wt. 

150' 

tan  6  1    ,        -  . 

tan  6  = 

.'.  sinO 

+  tan^  0 
If  a  =  the  change  of  velocity  per  second,  i.e.  the  acceleration, 

in  feet  per  second  per  second 

(15-^00-2)  x32 •  •  "^  ~  300 
5-5  X  32 

300 

0*585  ft.  per  sec.  per  sec. 
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Example  (3).  In  the  arrangement  shewn  in  fig.  49  heloWj  the 
mass  of  the  pulleys  and  friction  may  he  neglected,  and  the  string 
m,ay  he  taken  as  inextensihle. 

M 
Find  the  ratio  of  —  in  order  that  M  may  ascend  with  a  constant 

acceleration  of  2  feet  per  second  per  second. 

The  forces,  in  absolute  units,  acting  on  the  masses  are  shewn  on 

fig.  49. 

Consider  each  of  the  masses  separately. 

Take  mass  M.  The  resiiltant  force  acting 

upwards  in  the  direction  of  the  accelera- 
tion =  Tj  —  M^, 

.-.  T^-Mg=^  Ma      (1). 
For  mass  m,  we  have 

m^-Tg-M/S    (2). 

Also,  since  no  resultant  force  is  re- 
quired to  accelerate  the  pulleys  we  have, 

Ti  =  2T2, 

and  T2  =  Tg. 

Now  imagine  M  raised  1  foot,  then  if 

the  string  remains  taut,  m  must  be  lowered 
2  feet,  and  we  get : 

/3  =  2a. 
Substituting  in  (1)  and  (2),  we  have : 

2T2  -  Mg  ==  Ma, 

and  mg  —  Tg  =  2m,a. 

Eliminating  T^  we  get, 

(2m  -  M)^  =  (M  -f-  4w)  a. 

g  =  S2  ft.  per  sec.  per  sec,  and  a  =  2  ft.  per  sec.  per  sec, 

.'.   (2m-  M)  16r=M-h4m, 
or  17M=:28w, 

M      28 
i.e.  —  =Y=. m      17 
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Example  (4).  Clay  is  raised  from  a  pit  in  a  truck  which  is 
wound  up  an  incline  of  1  in  10.  The  winding  engine  is  such  that 

the  pull  in  the  rope  is  kept  constant  and  equal  to  550  lbs.  wt.  The 
weight  of  the  loaded  truck  is  2  tons  and  the  total  resistance  is  equal 

to  40  lbs.  per  ton. 

Find  the  velocity  of  the  truck  after  it  has  moved  from  rest  up 
a  distance  of  bO  feet  measured  along  the  incline. 

Fig.  50. 

tan6'  =  y\y, 

sin  6 
1 

=  ̂   nearly. 

VioT     10 The  resultant  force  up  the  track 

=  550^  -  80^  -  4480  sm  6  .  g 

=  (550-80-448)5^ 
=  22  X  ̂   pdls. 

Let  V  —  the  velocity  gained  in  time  t. 
Then  by  the  2nd  law  of  momentum, 

22^  =  2  X  2240  X-, 

or. 

22x32 

2x2240' n 

70      
 

(1). 
L.  E.  D. 
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The  gain  of  velocity  will  be  uniform  since  the  force  applied  is 
V 

constant,  and  therefore  the  average  velocity  =  - . 

Hence 

and  from  (1) 

50, 

550 

To"
 

/no =  3*95  feet  per  second. 

Varying  Force 

In  order  to  derive  our  units  we  have,  up  to  the  present,  assumed 
a  constant  force  and  a  constant 

mass,  but  in  many  cases  the 
force  will  not  be  constant  and 

the  momentum  may  be  chang- 
ing in  various  ways.  Suppose 

the  force  is  varying  with  the 
time  in  the  manner  shewn  in 

fig.   51.     Here    we    can   either  Time 

measure  the  rate  of  change  of  -^^S-  ̂-'^• 
momentum  at  definite  instants  of  time,  or,  ,we  can  find  the  total 

change  of  momentum  for  a  definite  interval  of  time. 

Let  8  (m^•)  be  a  small  change  of  momentum  produced  in  time 
St  starting  at  time  t.    Thus  for  this  interval  of  time  we  have  the 8(mv) 

It 
time  average  of  the  force  equal  to ,  and  the  true  force  at 

time  t  is  the  value  of  — ^ — -  when  ht  is  indefinitely  diminished, 

I.e. 

F  = 

d(mv) ~dr ' 

dv 

dt  ' 

or  if  m  is  constant, 

where  a  —  the  acceleration  at  the  particular  instant  of  time  t. 
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Again  we  have B(niv) nearly, 

I 

Bt 
or  F,8t  =  8  (mv). 

For  any  time  T  we  may  find  the  sum  of  each  of  these  terms. 

We  get  ^Fht  =  ̂ 8(mv). 

Now  2f8^,  when  St  is  made  indefinitely  small,  is  represented 

by  the  area  under  the  force-time  curve  from  t  —  0  to  t  =  T,  and 
this  area,  therefore,  represents  the  total  change  of  momentum 

produced  by  the  varying  force. 

Suppose  we  find  the  value  of ^FSt 
.    This  obviously  gives  us" 

the  time  average  of  the  force.    Let  us  call  it  F. 

Then,  i^.  T  -  the  total  change  of  momentum. 

We  must  now  see  how  these  laws  are  applied  to  practical  pro- 
blems, and  chiefly  we  shall  deal  here  with  the  second  law,  which 

we  will  re- write  in  this  form : 

Force  in  Absolute  units 

=  Change  of  momentum  in  unit  time. 

Accelerating  Force  on  a  Piston 

Take  the  case  of  a  petrol  engine.  Suppose  we  wish  to  find  the 

thrust  in  the  connecting  rod  for  a  given  position  of  the  crank. 

Let  P  =:  the  total  force  in  lbs.  wt.  due  to  the  gases  on  the  piston 
for  the  position  considered. 

y  /  /  y  /  y  y 

Fig.  52. 
5—2 
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In  example  (18),  p.  49,  we  have  seen  how  the  velocity  of  the 

piston  may  be  found,  and  we  can  therefore  draw  a  velocity-space 
curve.     From  this  curve  we  can  construct  an  acceleration-space 
curve.    Let  a  be  the  acceleration,  measured  towards  the  crank  shaft 

of  the  piston,  in  the  given  position.  Let  Gl=the  reaction,  in  lbs.  wt., 
of  the  connecting  rod  on  the  gudgeon  pin.    Consider  the  motion 

of  the  piston.    The  resultant  force  in  the  direction  of  the  motion 

=  (P  —  Q  cos  <^)  g  pdls. 

This  must  equal  the  rate  of  change  of  momentum. 

.'.  (P-Qcos<^)^=  Ma, 
where  M  is  the  mass  of  the  piston  and  gudgeon  pin  in  lbs., 

r         Ma")       1     ,, 
i.e.  Q  =  j  P  -    -\   T  lbs.  wt. 

To  get  some  idea  of  the  possible  magnitude  of  the  quantities 
involved,  take  the  following  example. 

Example  (5).  In  a  jmrticular  engine  the  mass  of  the  piston  and 

gudgeon  pin  is  5  lbs.  When  the  engine  is  running  at  1500  revolu- 
tions per  minute  the  acceleration  at  the  beginning  of  the  working 

stroke  is  7500  feet  per  second  per  second.  The  diameter  of  the 

cylinder  is  4  inches,  and  the  pressure  at  the  beginning  of  the  stroke 

is  300  lbs.  per  square  inch. 

To  find  the  value  of  Q  at  the  beginning  of  the  stroke  we  have 

P  =  TT  X  4  X  300  lbs.  wt. 

cos  ̂   =  1. 

.-.Q^  {1200.-^^^}  lbs.  wt. 
=  3768-1172 

=  2596  lbs.  wt. 

Example  (6).  In  starting  a  train,  the  engine  driver  opens  the 
throttle  so  that  the  tractive  force  increases  uniformly  from  zero  to 

7  tons  wt.  during  the  first  20  seconds.    The  total  weight  of  the  train 
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is  400  to7is,  and  (he  resistance  at  starting  increases  up  to  17  Ihs.  a 
ton,  and  then  r&inains  constant  for  the  remainder  of  the  20  seconds. 

Find  the  instant  the  train  starts  to  move,  and  draw  a  velocity- 
time  curve  for  the  tims  considered. 

Let  P  =  the  tractive  force,  and  R  =  the  maximum  tractive  resist- 
ance.   The  train  will  start  when  P  =  R. 

In  fig.  53,  OAB  represents  the  tractive  force-time  curve  and  OAC 
represents  the  tractive  resistance-time  curve. 

The  maximum  value  of  R  =  AN 
17x400, 

=  -2240-*""^"^- =  3 '04  tons  wt. 

> (t 
K / ^ 1 

1 

Ayff 

1 
7  tons 

/I          '     IG 
C 1 

1 

/             1 /                 |N 

1 

20  sees  — 
Fig.  53. 

^  Time 

The  time  at  which  the  train  begins  to  move  is  given  by  ON 

=  — =—  X  20  seconds 

=  8*7  seconds.  - 

The  resultant  force  acting  to  produce  momentum  is  given  at 
every  instant  by  the  difference  between  the  ordinates  of  OAB  and 
OAC.    Take  T  seconds  from  N. 

Area  A  KG  represents  the  total  momentum  generated. 
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li  v  =  the  velocity  in  feet  per  second,  and  if  we  measure  our 
mass  in  tons,  we  have 

400^?  =  area  KAG 

=  J  KG.  AG, 

KG  _   7 

AG  ~20' 

2"  2^(J  ̂   "^
 

0-014  Tl 

32. 
.-.  400v-i .".  V 

The  velocity-time  curve  for  the  20  seconds  considered  is  shewn 
in  fig.  54,  where  the  zero  for  the  time  in  the  equation  above  is 

8-7  seconds. 

o 

/ 
t / 

/ 
1 f 

/ / / 
/ / 

/ 
/ > / 

y 

,^ 

_ _ 1  1 

J, 

15 20 0  5  10 
Time  in  Seconds 

Fig.  54. 

Example  (7).  The  curve  below  shews  the  total  tractive  resistance 

per  ton  at  different  speeds  for  a  motor  lorry  on  a  road.  The  motor 
of  the  lorry  is  producing  a  constant  total  tractive  force  of  217  lbs. 

wt.  If  the  weight  of  the  lorry  is  7  tons  find  the  maximu7n  speed 
attained.  Find  also  the  time  taken  to  increase  the  speed  from  9  to 

1 3  miles  per  hour. 

The  tractive  force  per  ton  is  equal  to  ̂ y^=31  lbs.  This  is 
shewn  by  the  dotted  line  in  the  figure. 

At  maximum  speed  the  change  of  velocity  will  be  zero  and 
hence  the  tractive  force  =  the  tractive  resistance. 
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From  the  figure  the  maximum  speed  =  15-1  miles  per  hour. 
To  find  the  time  we  have,  if  Sv  is  the  gain  of  velocity  in  a  small 

time  8tj 

Acceleration  (a)  =  ̂   (nearly), 

a 

Draw  a  curve  representing  -  and  v,  then  the  area  under  this  curve 

gives  the  time. 
32 

/ 
2 

a 

28 
© 
o 
E c6 

I 

|-24 4-1 i •"  22 

9.0 

/ 

y 
/ 

y 
/ 

y 
/ 

^ 

^ 

9  10  11  12  13  14 

Speed,  miles'per  hour 
Fig.  55. 

If  R  =  the  tractive  resistance  in  lbs.  wt.  per  ton, 

Accelerating  force  per  ton  -  (31  —  R)  lbs.  wt. 

.*.  Acceleration  =  ̂— — ^^ /^    ft 

15 16 

2240 

2240 

per  sec.  per  sec., 

70 a  (31-R)x32  31 
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Using  fig.  55  we  find 

Speed  in  miles Tractive  Force Accelerating  Force 1 
per  hour per  ton  in  lbs. in  lbs. 

Accel,  in  ft./sec.^ 

9 22 
9 

7-78 

10 

22-8 
8-2 

8-54 

11 23-75 
7-25 

9-66 

12 25 6 

11-7 
13 

26-5 
4-5 

15-5 
13-5 27-5 

3-5 

20 

14 

28-5 
2-5 28 

The  curve  is  shewn  in  fig.  56. 
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« 
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u 

^^ 

in-         -            I.-**** 

J   __-_ 
10  n  12  13  14 

Speed  in  miles  per  hour 

Fig.  56. 

15 

Scales       1  division  =  imile  per  hour  =  f  §  foot  per  second. 
1 

1  division  = 
1  foot  per  sec.  per  sec. 
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The  area  under  the  curve  between  10  miles  per  hour  and  13  miles 

per  hour 
=  167  squares 

=  167  X  ̂ 1  X  1  seconds 
=  49  seconds. 

.*.  The  time  required  =  49  seconds. 

Example  (8).  A  machine-gun  is  mounted  on  an  aeroplane,  and 
when  the  latter  is  travelling  at  50  miles  per  hour  the  gun  is  fired  in 
the  direction  of  travel  for  1 5  seconds.  Find  the  reduction  in  speed 

of  the  aeroplane  due  to  this,  and  the  force  te7iding  to  move  the  gun 
relative  to  the  aeroplane. 

Total  weight  of  aeroplane  1800  lbs.  Rate  of  firing  600  bullets 

per  minute.  Weight  of  bullet  \oz.  Muzzle  velocity  of  bullets 
2000  feet  per  second. 

The  reaction  of  the  force  acting  on  the  bullets  is  at  every  instant 

acting  on  the  gun,  and  therefore  on  the  aeroplane. 

The  time  average  of  the  force  on  the  bullets  =  the  change  of 
momentum  per  second. 

The  mass  discharged  per  second  =  ̂ ^  lb. 

The  change  of  velocity  =  2000  feet  per  second. 

/.  Force  =  -{^  x  2000  pdls. 
=  19-5  lbs.  wt. 

This  is  the  force  tending  to  move  the  gun  relative  to  the  aeroplane. 
Now  let  us  examine  the  effect  of  the  reaction  of  the  force  on 

the  aeroplane.  We  may  neglect  the  small  change  of  mass  due  to 
the  discharge  of  the  bullets. 

The  force  of  y^^^  x  2000  pdls.  acts  for  15  seconds.  If  v  =  the 
velocity  of  the  aeroplane,  in  feet  per  second,  at  the  end  of  the  15 
seconds, 

1800(55ji^-.)=A.2000><15, 
or,  v=:  73-3 -5-2 

=  68*]  feet  per  second 
=  46-5  miles  per  hour. 
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Sxample  (9).  A  balloon  of  total  mass  620  lbs.  is  d^'ifting  hori- 
zontally token  40  lbs.  of  sand  are  suddenly  released.  Find  the 

acceleration  imtnediately  after  the  sand  is  released. 

Since  initially  there  is  no  vertical  acceleration,  the  upthrust 

equals  620  lbs.  wt.  This  upthrust  is  equal  to  the  weight  of  the 

volume  of  air  displaced  by  the  balloon.  The  latter  will  be  practi- 
cally the  same  before  and  after  the  release  of  the  sand. 

After  the  release  of  the  sand  we  have  the  net  resultant  force 

upwards 
=  {620  -  580}  lbs.  wt. 

=  40  lbs.  wt. 

Let  a  =  the  vertical  acceleration  upwards  immediately  after 
release  of  the  sand,  then 

40^  -  580a, 

40  X  32 
l.e.  a 

580 

=  2-2  feet  per  sec.  per  sec. 

As  the  balloon  begins  to  ascend  there  will  be  an  increasing 
resistance  due  to  the  motion,  and  the  acceleration  will  decrease.   . 

Example  (10).     Water  issuing  from  a  nozzle^  of  2  inches  dia- 
meter, ivith  a  velocity  of  50  feet  per 

second,  impinges  on  a  vertical  wall,  the 

jet  being  at  right  angles  to  the  wall.    Ij  /  / 

there  is  no   splash  find  the   pressure       0"""-^"-— >___  ̂   -^  "^/   / 
exerted  on  the  wall.  (  TD^¥^--^ \ 

\  \ 

If  there  is  no  splash  the  water  will  \  \ 

flow  along  the  surface  of  the  wall  after  ^ 

impact.    Let  F  be   the  pressure  pro-  I 
duced  on  the  wall.    This  must  equal  Fig.  57. 
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the  change  of  momentum  per  second  in  a  direction  perpendicular 
to  the  wall 

=  the  mass  impinging  per  second  x  the  change  of  velocity  in 
the  direction  of  the  force 

=  pav .  V,  where  p  is  the  density  of  water, 

=  pav^. 
.'.  Pressure  =  62*5  x  x  50  x  50  pdls. 

62-5 

2500 

32  X  144 

107  lbs.  wt. 

lbs.  wt. 

Example  (11).  ̂ ifly  cubic  feet  of  water  are  flowing  per  minute 
along  the  fixed  vane  AB  shewn  in  fig.  58  below.  The  speed  along 
the  vane  is  constant  and  equal  to  20  feet  per  second.  Find  the 

magnitude  and  direction  of  the  resultant  force  produced  on  the  vane. 

.^ 
 '^ 

I Fig.  58. 

The  mass  flowing  per  second 

50  X  62-5 

Fig.  59. 

60 

=  52  lbs. 

The  magnitude  of  the  momentum  per  second  at  A  or  B 
-  52  X  20 

=  1040  units. 

Let  OP  represent  1040  units  at  A,  and  OQ  represent  1040  units 

at  B  (fig.  59). 
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The  change  of  momentum  per  second  is  represented  by  PQ, 

-2x1040  sin  221° 
=  2080  X  0-382 
=  795  units 

=  Force  of  the  vane  on  the  water. 

The  resultant  force  on  the  vane 

=  795  pdls.     - 

=  24-8  lbs.  wt. 

The  direction  of  the  force  is  given  by  the  angle  a, 

'    a  =  90-22i 

=  671°. 

Impulse 

When  two  bodies  impinge  on  one  another,  or  a  moving  body 
impinges  on  a  fixed  object,  there  is  a  more  or  less  sudden  change 

of  momentum.  In  many  cases,  it  is  impossible  to  measure  the  time 

of  the  impact  or  the  rate  at  which  the  momentum  of  either  body 

is  changed,  and  in  such  cases,  we  can  only  measure  the  final  effect 
of  the  stress  which  exists  between  the  two  bodies  while  they  are 
in  contact. 

We  have  already  seen  that,  F .t=  Mv,  Where  F  is  the  average 
force  acting,  t  the  time,  and  Mv  is  the  total  change  of  momentum 

produced. 

Since  we  cannot  measure  the  force  itself,  in  such  cases  we  have 

to  be  content  with  estimating  the  value  of  the  product,  which 

can  be  obtained  by  measuring  the  value  of  the  total  change  of 
momentum.  This  product  is  called  the  Impulse.  There  is  no 

special  name  for  the  units  in  which  it  is  measured.  In  the  absolute 

system  the  unit  will  be  the  same  as  that  of  momentum,  in  the 

gravitation  system  the  unit  will  be  that  of  momentum  multiplied 

b5^  g  (the  numerical  value  of  the  acceleration  due  to  gravity). 
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Example  (12).  A  mass  of  clay  weighing  5  lbs.  is  thrown 
against  a  fixed  wall  with  a  velocity  of  10  feet  per  second  and  sticks 
on  the  wall.    What  is  the  impulse  of  the  blow? 

The  impulse  =  the  total  change  of  momentum 
=  5  X  10  F.p.s.  units. 

Here  we  cannot  find  what  is  the  average  pressure  on  the  wall,  or 

the  pressure  at  any  instant,  since  we  know  nothing  about  the  time 

taken  for  the  clay  to  come  to  rest.  It  may  be  asked,  what  happens 
to  the  wall,  since  it  receives  the  same  impulse,  but  in  the  opposite 

direction,  as  the  clay.  Theoretically  there  is  the  same  change  of 
momentum  produced,  but  the  mass  of  the  wall  and  the  earth,  to 

which  it  is  fixed,  is  so  great  that  the  velocity  is  negligibly  small. 

Magnitude  of  impulsive  force.  It  may  be  noted  that, 

generally,  the  time  of  the  impact  will  be  very  short,  and  hence 
we  may  expect  that  the  time  average  of  the  force  will  be  large. 

To  give  some  idea  of  this,  we  may  take  two  cases  which  have 
been  investigated. 

(1)  Two  ivory  billiard  balls  impinge  with  equal  velocities  of 

8  feet  per  second.  It  has  been  shewn  that  the  time  of  the  impact 
is  4  oVo  ̂ ^  ̂  second,  and  that  the  maximum  total  pressure  between 

the  balls,  which  occurs  at  the  instant  when  they  are  at  rest,  is 
equal  to  1300  lbs. 

(2)  A  leaden  bullet  weighing  0*03  lb.  hits  a  steel  target  with 
a  velocity  of  1800  feet  per  second.  The  time  required  to  stop 

the  bullet  is  about  ysJxjT^  second. 

Hence  the  time  average  of  the  force  on  the  target 
0-03  X  1800    ̂ , 
=  1  pdls. 

18000 

0-03  X  1800  X  18000 

=   22i0T^2   '^^^"'- 
=  13'5  tons  wt. 

In  this  case  the  pressure  is  probably  nearly  uniform  during  the 

stopping  of  the  bullet. 

In  cases  where  the  time  during  which  the  force  is  acting  is  very 
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small  we  speak  of  the  impulse  as  a  blow.  As  we  have  already  seen, 

the  time  may  be  very  short  indeed  and  the  average  force  will 

therefore  be  very  large,  since  the  product  of  the  two  is  equal  to 
the  definite  and  finite  change  of  momentum  which  occurs.  In 

such  cases,  we  can  generally  omit  the  effect  of  steady  forces  which 

may  also  be  acting  during  the  time  of  the  blow,  since  the  changes 

of  momentum  produced  by  them  in  the  short  time  will  be  negli- 
gibly small. 

Take  the  example  of  the  bullet  given  on  p.  77,  and  suppose  it 

is  fired  vertically  downwards  at  the  target.    By  neglecting  the 

steady  force,  namely  the  weight,  in  considering  the  impact,  we  are 

only  neglecting  0*03  lb.  wt.  in  comparison  with   13  "5  tons  wt., 
^  0-03  X  100  1 I.e.  we  are  making  an  error  or  ̂ ,,^ — tttt  or  tt^t^ttp^  per  cent. 
2240  X  13-5        10000 

Case  of  two  bodies  impinging.  When  two  bodies  impinge 

we  may  if  we  like  consider  the  two  as  a  single  system.  Hence  in 

all  cases  of  bodies  impinging  there  is  no  total  change  of  momen- 
tum due  to  the  impact  since  there  is  no  external  force  acting,  or 

as  it  is  often  stated,  the  total  momentum  before  impact  equals  the 

total  momentum  after  impact.  Another  way  of  looking  at  the  pro- 
blem is  to  consider  each  body  separately.  Since  the  total  change  of 

momentum  is  zero,  one  body  must  lose  exactly  the  same  quantity 
as  the  other  body  gains.  But  the  forces  acting  on  each  body  are 

proportional  to  the  change  of  momentum  of  each  body,  and  since 

these  are  equal  in  magnitude  and  opposite  in  sign,  the  forces  on  the 
two  bodies  are  equal  and  opposite.  This  is  true  whatever  be  the 

length  of  time  during  which  the  bodies  are  in  contact.  The  two 

equal  and  opposite  forces  which  are  called  into  play  together  form 
what  is  called  a  stress. 

Equilibrium.  The  second  law  of  momentum  is  quite  general 

in  its  application,  and  we  may  use  it  to  investigate  the  forces  acting 

on  a  body  or  system  of  bodies  which  is  in  equilibrium,  i.e.  at  rest. 

In  this  case,  the  rate  of  change  of  momentum  is  zero,  and  there- 
fore the  resultant  force,  on  the  system  or  any  part  of  it,  must  also 

be  zero.    By  applying  the  law,  firstly  to  the  whole  and  afterwards 
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to  the  different  parts,  we  can  shew  that,  in  every  case,  the  inter- 
action of  any  two  bodies,  or  parts  of  a  body  which  are  connected 

or  in  contact,  consists  of  a  stress  in  which  the  two  components 

are  always  equal  in  magnitude  and  opposite  in  sign.  This  fact  is 

often  stated  in  the  form,  "  to  every  action  there  is  an  equal  and 

opposite  reaction,"  and  is  called  Newton's  third  law  of  motion.  As 
we  have  seen,  it  really  follows  directly  from  the  second  law  of 
momentum.  It  forms  the  basis  of  investigation  of  the  internal 

and  external  forces  in  statical  problems. 

Example  (13).  A  railway  truck  of  mass  12  tons,  moving  with 
a  velocity  of  6  whiles  per  hour,  impinges  on  another  truck  weighing 

10  tons,  and  moving  in  the  same  direction  with  a  velocity  of  2  miles 

per  hour.  When  impact  occurs  the  two  trucks  are  automatically 
coupled  together.    Find  the  velocity  of  the  trucks  after  impact. 

12  tons 10  tons 

Fig.  60. 

Let  F .  i5  be  the  impulse  between  the  two  trucks,  and  let  v  —  the 
final  velocity  in  the  original  direction  of  motion. 

For  the  12  ton  truck, 

F.^  =  12(6-'y). 
For  the  10  ton  truck, 

F.«5  =  10(v-2). 

.'.  72-12^=.10v-20, 

or  v  =  ̂ ^  =  4*17  miles  per  hour. 
The  impulse  of  the  blow  =F .t 

.^,^       .     2240x88 =  12(6-.)  X— ^^- 

=  7220  F.p.s.  units. 

Or,  Momentum  before  impact  =  Momentum  after  impact, 

i.e.  12  X  6  + 10  X  2  =  (12  + 10)  V, 

.".  V  =  4:'l7  miles  per  hour. 
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Sxample  (14).  A  shell  of  mass  m,  lbs.  impinges  obliquely  on 
a  fixed  target  and  ricochets.  If  the  striking  velocity  is  u  feet  per 

second  inclined  at  an  angle  6  to  the  normal  at  the  point  of  contact, 

and  the  velocity  of  7'ebound  is  v  feet  per  second  inclined  at  an 
angle  <{>  to  the  7iorm,al,  find  the  I'esultant  blow  on  the  target. 

Resolve  the  blow  into  two  components,  P  and  Q  say,  tangential 
and  normal  to  the  plane  of  the  target. 

normal 

/////////////////////A ^////////^////y////// 

•  \ 

a    \ 

Tangential^ 

Normal. 

\ 

Fig.  61. 

p  =  m,u  sin  6  —  mv  sin  ̂  

=  m{u  sin  6 ̂ v sin  ̂ ). 
Q  =  mu  cos  6  +  Tnv  cos  <^ 

=  m  (u  cos  6  +  V  cos  <t>). 

Resultant  (R)  =  x/p^  +  Q^ 

=  m  {u^  sin^  9  +  v^  sin^  <j5>  —  2uv  sin  0  sin  <f> 

+  u^  cos^  6  +  v^  cos^  <^  +  2uv  cos  6  cos  <^p 

=  m  {^2  +  vV  2uv .  cos  (0  +  <f>)}^. 
This  makes  an  angle  a  with  the  normal  such  that 

P 

^  tan  a  =  - Q 

u  sin  6  —  v  sin  (f> 

u  cos  d  +  v  cos  ̂   ' 
Or  using  vectors :  The  change  of  momentum  equals  the  vector 

difference  of  mu  and  mv. 
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This  is  given  by  OB  in  fig.  62,  where  OA  represents  the  initial 

TO  omentum  mu  of  the  projectile,  and  BA  represents  the  final  mo- 
mentum mv. 

The  impulse  of  the  blow  =  OB 

=  m  {u^  +  v^  ̂   2uv  cos  (0  +  <j>)]^y 

and  the  direction  may  be  calculated  from  the  figure. 

It  may  be  noted  that  generally  we  shall  not  be  able  to  deter- 
mine the  values  of  v  and  <^,  if  we  are  merely  given  u  and  0. 

Fig.  62. 

Example  (15).  A  hammer  head  weighing  1*2  lbs.,  arid  moving 
with  a  velocity  of  16  feet  per  second,  strikes  a  nail  of  Q'l  lb.  weight 
and  drives  it  |  inch  into  a  piece  of  wood.  Assuming  no  rebound 
of  the  hammer  and  the  resistance  to  penetration  of  the  nail  constant 

find  its  magnitude. 

Let  V  =  the  velocity  in  feet  per  second  with  which  the  nail  and 

hammer  move  immediately  after  the  impact.  Then  by  the  con- 
servation of  momentum, 

l-2xl6-(l-2  +  0-l)v; 

16x1-2 •'•  ̂  =  -T3- 
=  14'8  feet  per  second. 

Since  the  resistance  to  penetration  is  constant  the  time  rate  of 
change  of  velocity  will  be  uniform. 

L.  E.D.  6 
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.'.  the  average  velocity  of  penetration  =  — ^r— 

=  7'4  feet  per  second, 

and  the  time  of  penetration  =  —^ — -—  second. 

24  X  7-4 
The  resistance  =  rate  of  change  of  momentum 

=  l-3x  14-8x24x7-4pdls. 

1-3  X  14-8  X  24  X  7-4  „ 

=   32   l^^-^^- 

=  1071bs.  wt. 

The  magnitude  of  the  blow  between  the  hammer  and  the  nail 

=  the  change  of  momentum  of  the  hammer 

=  1-2  (16 -14-8) 

=  1-2  X  1-2 

=  1-44  F.p.s.  units. 

Example  (16).  A  bar  of  inetal  3  inches  wide,  1  inch  thick,  and 

1 5  feet  long  is  to  he  passed  through  a  rolling  mill,  the  area  of  section 

being  thereby  reduced  by  \.  The  diameter  of  the  rolls  is  12  inches 
and  they  rotate  at  200  revolutions  per  minute.  Assuming  that  the 

speed  at  which  the  bar  leaves  the  rolls  is  the  same  as  that  of  the 

surface  of  the  rolls,  shew  that  the  tangential  impulse  on  the  rolls 

when  the  bar  is  first  gripped  is  1180  absolute  f.p.s.  units.  Shew 

also  that,  apart  from  the  foirce  required  to  overcom,e  friction  and 

to  do  the  work  of  deforming  the  metal,  a  tangential  force  of 

6 '4  lbs.  wt.  is  required  to  maintain  the  motion. 
The  density  of  the  metal  =  4:80  lbs.  per  cubic  foot. 

The  speed  of  the  surface  of  the  rolls 

_  27r  X  200 
"60x2 

=  10-47  feet  per  second 

=  the  speed  at  which  the  bar  leaves  the  rolls. 
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Since  the  same  volume  of  metal  passes  in  and  out  of  the  rolls 
in  a  unit  time,  the  velocity  at  which  the  bar  is  fed  into  the  rolls 

=  f  X  10-47 
=  7*85  feet  per  second. 

At  starting,  the  whole  bar  is  suddenly  given  this  velocity, 

I.-
,  the  impulse  

=  480  x  ̂ f  ̂  x  15  x  7*
85 

=  1170  abs.  F.p.s.  units. 

The  steady  tangential  force  required  to  maintain  the  motion 

=  the  change  of  momentum  per  second 

^                =  the  mass  per  second  x  the  change  of  velocity 

i                   480x3x7-85 
    

,,^,^     ^„^, 

;  =   144   X  (10-47 -7-85) 

;  =  204  pdls. 
=  6-4  lbs.  wt. 

Examples.   Chapter  III 

1.  What  do  you  understand  by  momentum  ?  Define  force  in  terms  of  this 
quantity. 

In  5  seconds  a  car  weighing  30  cwt.  changes  its  speed  from  20  feet  per  sec. 
to  .27  feet  per  sec. ;  what  uniform  force  must  have  been  acting  if  it  requires 
50  lbs.  per  ton  to  just  move  the  car  steadily  on  the  track  ?  If  the  power  is 
cut  off  at  the  end  of  the  5  seconds,  what  constant  deceleration  will  result,  and 
how  far  will  the  car  run  before  coming  to  rest  ? 

2.  Express  a  force  equal  to  the  weight  of  1  ton  in  (1)  absolute  f.p.s.  units 
[(pouudals),  (2)  absolute  c.g.s.  units  (dynes). 

1  inch  =  2 -54  centimetres.  1  pound  =  453-6  grams. 
Acceleration  due  to  gravity  =  981  cms.  per  sec.  per  sec. 

3.  A  car  weighing  12  tons  is  ascending  a  slope  of  3  in  100  against  a 
frictional  resistance  equal  to  1  per  cent,  of  its  weight.  What  pull  is  required 

in  order  that  the  car  may  increase  its  velocity  by  1-5  miles  per  hour  in  one 
second  ? 

4.  Explain  fully  how  you  infer  that  at  a  given  place  on  the  earth  a  body's 
weight  is  proportional  to  its  mass. 

6—2 
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Two  weights  W,  W  are  connected  by  a  light  string  passing  over  a  light 
pulley.  If  the  pulley  moves  upwards  with  an  acceleration  equal  to  that  of 
gravity  shew  that  the  tension  of  the  string  is 

4WW' 

W+W' 

5.  A  cage  weighing  2000  lbs.  can  be  raised  or  lowered  in  the  shaft  of  a 

mine  by  a  cable.  Find  the  tension  in  the  cable  (1)  when  the  cage  is  rising 
or  falling  with  a  uniform  velocity,  (2)  when  it  is  rising  with  an  acceleration 
of  2  feet  per  second  per  second,  and  (3)  when  it  is  falling  with  an  acceleration 
of  5  feet  per  second  per  second. 

«.  A  tram-car  weighing  17,000  lbs.  is  ascending  a  gradient  of  1  in  20  with 

an  acceleration  of  1-2  feet  per  second  per  second.  If  the  resistance  is  equal 
to  0*011  of  the  weight  find  the  tractive  force  on  the  rails.  If  the  tractive  force 
and  resistance  remain  the  same,  what  would  be  the  acceleration  when 
travelling  down  a  gradient  of  1  in  30  ? 

7.  A  truck  is  running  on  the  level  with  a  velocity  of  20  miles  per  hour 
when  the  wheels  are  locked  by  the  application  of  the  brakes.  If  the  coefficient 

of  sliding  friction  between  the  wheels  and  the  rails  is  0*08,  for  how  long  and 
for  what  distance  does  the  truck  move  before  coming  to  rest  ? 

Find  the  corresponding  time  and  distance  if  the  truck  is  moving  down  a 
slope  of  1  in  100. 

8.  Find  the  magnitude  and  direction  of  the  force  which,  acting  on  a  mass 
of  4  pounds  which  is  moving  with  a  velocity  of  8  feet  per  second,  will  in 
4  seconds  cause  its  velocity  to  be  8  feet  per  second  in  a  direction  at  right 
angles  to  the  original  direction  of  motion. 

9.  A  fire  engine  is  delivering  312  gallons  of  water  per  minute  through  a 

nozzle  of  1|-  inch  diameter,  fixed  to  the  engine  and  inclined  upwards  at  30° 
to  the  horizontal.  Find  the  vertical  and  horizontal  reactions  produced  on 
the  engine. 

1  gallon  of  water  weighs  10  lbs.  1  cubic  foot  of  water  weighs  62*5  lbs. 
10.  A  motor-car  has  a  machine-gun  mounted  on  it,  and  when  the  car  is 

at  rest  the  gun  is  fired  horizontally  and  straight  to  the  front  for  15  seconds. 
Find  the  velocity  of  the  car  at  the  end  of  this  time. 

Bate  of  firing,  600  bullets  per  minute ;  muzzle  velocity  of  bullets,  2400  feet 
per  second;  weight  of  bullet,  J  oz. ;  weight  of  loaded  car,  18  cwt.;  resistance 
to  motion  of  the  car,  16  lbs. 

11.  A  mass  of  10  lbs.  is  acted  upon  by  a  force  P  which  varies  with  the 

time  t  according  to  the  law,  P=2  sin  —t  lbs.  weight,  where  t  is  in  seconds, 

15 

Plot  the  force-time  curve  from  i=0  to  t  =  30,  and  from  it  deduce  the  velocity- 
time  curve,  being  given  that  the  velocity  is  zero  when  the  time  is  zero. 
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12.  A  boat  is  sailing  at  a  constant  velocity  of  6  knots  before  a  following 
wind  of  twice  the  velocity  of  the  boat.  The  sail  area  is  450  square  feet,  and 

may  be  assumed  a  plane  area  perpendicular  to  the  direction  of  motion  of  the 
boat.    Find  the  total  resistance  to  motion  of  the  boat. 

One  cubic  foot  of  air  weighs  0*08  lb. 
One  knot  equals  6080  feet  per  hour. 

13.  The  relation  between  the  total  tractive  resistance  and  the  speed  for  a 
locomotive  and  train  weighing  246  tons  is  given  below.  The  total  load  on 
the  driving  wheels  of  the  locomotive  is  33  tons,  and  the  coefficient  of  sliding 
friction  between  the  wheels  and  the  rails  is  1/5,  The  train  is  accelerated  from 
Test  as  rapidly  as  possible  on  a  level  track.   Plot  a  curve  shewing  the  value  of 

  r   : —  for  different  speeds,  and  from  it  estimate  the  time  for  the  train acceleration 

to  attain  a  speed  of  45  miles  an  hour. 

Speed  in  "feet per  sec. 
0 5 

7-5 

10 20 
30 

40 50 

60 70 

80 

Eesistance  in 
lbs.  per  ton 10-9 7-3 

6-6 

6-5 7-a 8-4 

9-9 

11-8 
13-9 

16-3 
19-3 14.  A  torpedo  boat  fitted  with  hydraulic  propulsion  took  in  1  ton  of  water 

per  second  in  a  direction  perpendicular  to  the  direction  of  motion  of  the  boat, 

and  discharged  it  horizontally  astern  with  a  velocity  of  37*25  feet  per  second, 
relative  to  the  boat.  With  this  discharge  the  steady  speed  of  the  boat  was 
12-6  knots.    Find  the  resistance  to  motion  of  the  boat. 

15.  A  locomotive  while  travelling  at  40  miles  per  hour  scoops  up  760 
gallons  of  water  from  a  trough  in  a  length  of  500  yards.  The  water  enters 
the  scoop  horizontally  and  is  discharged  into  the  tank  of  the  locomotive 
vertically  downwards.  The  delivery  pipe  has  a  diameter  of  4  inches.  Due 
to  the  change  of  momentum  of  the  water,  find  (1)  the  horizontal  resistance 

to  the  train's  motion,  (2)  the  reduction  of  pressure  on  the  rails. 
16.  If  the  resistance  to  the  motion  of  a  train  running  at  V  miles  per  hour 

be  0-3(V  +  10)  lbs.  per  ton,  find,  graphically  or  otherwise,  how  long  it  will 
take  to  reduce  the  speed  from  50  to  30  miles  per  hour  in  the  case  of  a  train 
running  freely  on  the  level.    How  far  will  the  train  run  in  the  time  ? 

17.  A  balloon  weighing  800  lbs.  is  descending  with  a  constant  acceleration 

•of  1  foot  per  second  per  second,  when  50  lbs.  of  ballast  is  suddenly  released. 
Find  the  magnitude  and  direction  of  the  acceleration  immediately  after  the 
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18.  It  is  found  that  a  bullet  weighing  0*4  ounce  and  travelling  at  2400  feet 
per  second  will  just  penetrate  36  inches  of  a  certain  wood.  If  a  similar  bullet 

with  the  same  initial  velocity  is  fired  through  18  inches  of  the  same  wood, 
what  will  be  the  velocity  when  it  emerges,  and  what  is  the  force  of  resistance 
to  penetration  ?    Neglect  the  spin  of  the  bullet. 

19.  Find  the  minimum  plan  area  a  parachute  may  have  to  enable  a  man 
weighing  10  stone  to  descend  vertically  at  a  final  speed  of  not  more  than 
25  feet  per  second.  The  weight  of  the  parachute  may  be  taken  as  10  lbs., 

and  the  weight  of  one  cubic  foot  of  air  0*08  lb. 

20.  The  velocity  of  flow  in  a  water  main  of  6  inches  diameter  is  5  feet, 

per  second.  At  one  place  the  main  is  bent  through  an  angle  of  30".  Find 
the  resultant  force  on  the  bend. 

21.  The  inlet  valve  of  a  petrol  engine  is  held  on  its  seat  by  a  spring  which 
exerts  a  force  of  1^  lbs.  If  the  valve  opens  downwards,  weighs  3  ounces,  and 

has  a  lift  of  0*2  inch,  find  the  time  occupied  in  closing,  and  the  velocity  at 
the  instant  of  closing. 

22.  A  plumb-line,  7  feet  long,  is  suspended  from  the  roof  of  a  railway 
carriage  which  is  travelling  along  a  straight  level  track.  The  plumb-bob  is 
observed  to  be  displaced  3  inches  from  the  vertical  through  the  point  of  sus- 

pension in  the  opposite  direction  to  the  direction  of  motion  of  the  train. 
What  is  the  acceleration  of  the  train? 

23.  The  acceleration  of  the  reciprocating  parts  of  a  steam  engine  is  given 
in  feet  per  second  per  second  by  120  cos  ̂   +  20  cos  2^,  where  d  is  the  angle 
which  the  crank  makes  with  the  inner  dead  centre.  If  the  weight  of  the 

reciprocating  parts  is  8  tons,  find  the  accelerating  force  required  in  the 

direction  of  the  line  of  stroke  for  the  positions  given  by  values  of  d,  0°,  45°, 
90°,  135°,  180°. 

24.  A  small  mass  is  suspended  by  two  equal  strings  each  inclined  at  30° 
to  the  vertical.  Shew  that  if  one  of  the  strings  be  suddenly  cut  the  tension 

in  the  other  is  immediately  increased  by  50  °/o- 

25.  Using  a  pile-driver  with  a  hammer  weighing  1  ton,  it  is  found  that  a 
pile  weighing  4  cwt.  is  driven  5  inches  into  the  ground  when  the  hammer 
falls  a  distance  of  10  feet  before  striking.  Assuming  that  there  is  no  rebound 
of  the  hammer,  and  that  the  mean  resistance  and  the  drop  remain  the  same, 

find  the  distance  which  the  pile  would  be  driven  if  the  weight  of  the  hammer 
were  increased  by  |  ton. 
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26.  The  muzzle  velocity  of  an  eigh teen-pounder  shell  is  1600  feet  per 
second,  and  the  gun  recoils  in  its  cradle  a  distance  of  40  inches.  The  force 
exerted  on  the  gun  during  recoil  is  1^  tons  weight.  Find  the  mass  of  the  gun 
and  its  momentum  at  the  beginning  of  recoil. 

27.  A  sledge  hammer  of  mass  14  lbs.  falls  freely  from  a  height  of  4  feet 
on  an  anvil  and  rises  6  inches  after  the  blow.  If  the  time  of  contact  be  ̂ ^jt 
of  a  second,  find  the  mean  force  between  the  hammer  and  the  anvil. 

28.  Two  masses  A  and  B,  weighing  3  and  4  kilograms  respectively,  are 
connected  by  a  light  inextensible  string  which  passes  over  a  light  frictionless 
pulley.  The  strings  are  vertical  and  just  taut,  the  mass  A  resting  on  the 
ground  and  the  mass  B  being  supported  1  metre  from  the  ground.  If  the 
support  of  B  is  suddenly  removed,  find  (1)  the  time  before  B  first  reaches  the 
ground,  (2)  the  impulse  in  the  string  when  B  is  first  jerked  off  the  ground, 
(3)  the  greatest  height  to  which  B  subsequently  rises. 

29.  A  freely  suspended  steel  bar,  1^  inches  diameter,  was  subjected  to  a 
pressure  on  the  end  by  means  of  a  charge  of  explosive.  The  pressure  varied 
with  the  time  in  the  manner  shewn  by  the  table  below. 

Find  the  magnitude  of  the  impulse  produced.  If  the  bar  weighs  12  lbs. 
find  the  velocity  acquired. 

Pressure,  tons  per 
sq.  inch 

0 

27 

£0 
37 

5 

22 

10 

8 

20 

3 

30 

0 

40 

Time,  millionths    '    ̂ of  a  second 
1 2-5 

30.  Two  equal  masses  A  and  B,  moving  in  the  same  straight  line  and  in 
the  same  direction,  collide.  Before  the  collision  the  distance  of  A  behind  B 
is  diminishing  at  the  rate  of  6  feet  per  second  and  after  the  collision  the 
distance  of  B  ahead  of  A  is  increasing  at  the  rate  of  2  feet  per  second ;  also 
at  one  instant  during  collision  both  are  moving  at  10  feet  per  second.  Find 
their  velocities  before  and  after  collision. 



CHAPTER  lY 

Angular  Momentum 

In  the  chapter  dealing  with  motion  we  saw  that  when  a  body  was 
rotating  about  an  axis  it  was  convenient  to  use  the  term  angular 
velocity  to  express  the  motion. 

We  must  now  investigate  how 

forces  ma}'  produce  a  change  in 
angular  velocity.    In  doing  this, 

we  do  not  have  to  introduce  any 

new  principles,  but  merely  to 

apply  those   we    have    already 
stated.   We  will  first  of  all  deal 

with  cases   where  the  rotation 

is  about  a  fixed  axis,  and  where 

the  forces  applied  are  in  a  plane 

perpendicular   to    the    axis'  of 
rotation.  ^ig-  ̂ 3. 

Suppose  we  have  a  body,  as  shewn  in  fig.  63,  which  is  free  to 
rotate  about  a  fixed  axis  through  O  perpendicular  to  the  plane 

of  the  paper.  Let  this  body  be  acted  upon  by  a  set  of  forces  Pj, 

P2,  etc. 

Consider  any  small  particle  A  of  mass  m  situated  at  a  distance 

r  from  O.  If  at  a  particular  instant  the  angular  velocity  of  the 

body  is  w,  then  the  linear  velocity  of  A  will  be  tor  in  a  direction 
perpendicular  to  OA. 

The  particle  at  A  will  also  have  an  acceleration  of  magnitude 

cD^r  towards  O  as  found  in  Chapter  II. 
Now  there  will  be  certain  forces  acting  on  the  particle  at  A,  and 

we  may  conveniently  consider  these  as  having  a  total  component, 

/  say,  perpendicular  to  OA  and  ̂ ,  say,  along  AO. 

We  will  deal  first  of  all  with  the  force /^  acting  perpendicular 
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to  OA,  leaving  the  force  p  for  future  consideration.    It  is  obvious 
that  the  force  p  will  have  no  effect  on  the  rotation. 

Let  the  angular  velocity  at  the  instant  considered  be  increasing 

by  an  amount  Sw  in  a  time  U,  or  at  the  rate  -7- .    The  linear  ac- 

celeration of  A  perpendicular  to  OA  is  r  — . 

Applying  the  second  law  of  momentum  to  the  particle  at  A  and 
measuring  forces  in  absolute  units  we  have 

f=  the  rate  of  change  of  momentum, 

i.e.  f—  m.r  .-J-  •>  where  m  is  the  mass  of  the  particle. 

Multiplying  by  r  we  have 

•^•^='"'•'•5   (^^- 
Now  we  may  imagine  the  whole  body  to  consist  of  an  infinite 

number  of  particles  such  as  the  one  at  A,  and  for  each  particle  we 
shall  get  an  equation  similar  to  equation  (1). 

Adding  the  right  and  left-hand  sides  of  all  these  equations  we 
may  express  the  sum  thus 

But  -J-  is  the  same  for  each  of  the  particles,  and  hence  we  may 
write  diM -^  dt 

Ifr  =  the  algebraic  sum  of  the  moments*  of  all  the  forces  acting 
on  the  particles  about  O. 

These  include  both  external  and  internal  forces.  But  the  in 

ternal  forces  balance,  and  hence 

2/r  =  the  algebraic  sum  of  the  moments  of  all  the  external  forces 
about  the  axis  O. 

This  is  often  called  the  torque  or  turning  moment  on  the  body 
and  is  denoted  by  the  symbol  T. 

*  The  moment  of  a  force  about  a  point  is  equal  to  the  product  of  the  magni- 
tude of  the  force  and  the  perpendicular  distance  from  the  point  to  the  force. 

2/r  —  ̂ [  tnr^ .  -^  ) . 
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%mr^  =  the  sum  of  the  products  of  the  mass  of  each  particle 
multiplied  by  the  square  of  its  distance  from  O. 

This  is  called  the  moment  of  inertia*  of  the  body  about  the 
axis  O,  and  is  usually  denoted  by  the  symbol  I. 

The  above  equation  may  be  written 

dt 

Now  just  as  the  mass  multiplied  by  the  linear  velocity  is  called 

linear  momentum  or  more  commonly  momentum,  so  the  product 
Id)  is  called  the  angular  momentum,  or  sometimes  the  moment 
of  momentum. 

I  -^  is  the  same  thing  as  \r^  ,  i.e.  the  rate  of  change  of  angular 
momentum. 

Using  absolute  units  for  the  torque  we  may  write  the  second  law 
of  momentum  as  applied  to  rotation  thus  : 

Torque  =  Rate  of  change  of  angular  momentum. 
If  the  torque  is  measured  in  gravitation  units  we  must  write 

™  _  Rate  of  change  of  angular  momentum 

Varying  Torque 

If  the  torque  is  varying,  we  can,  as  we  did  in  dealing  with  linear 

momentum,  either  measure  the  rate  of  change  of  angular  momen- 

tum at  definite  instants  of  time,  or,  we  can  find  the  total  change 
of  angular  momentum  for  a  definite  interval  of  time. 

Suppose  the  torque  at  different  instants  of  time  is  given  by  the 
curve  in  fig.  64. 

We  have.  Torque,  T  =  —j-  . 

*  Inertia  may  be  defined  as  that  property  of  a  body  in  virtue  of  which  it 
will  not  change  its  state  of  motion  or  rest  unless  acted  upon  by  some  external 
force.    For  translational  problems  it  is  measured  by  the  mass. 
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91 If  we  take  a  narrow  strip  as  shewn  shaded  in  the  figure,  the 
area  =  T  8^ 

=  8{l<o), 

i.e.  the  area  represents  the  change  of  angular  momentum  during 
time  St. 

.*.  For  any  time  6  from  the  starts  the  area  under  the  torque-time 
curve  from  <  =  0  to  t  —  9,  measures  the  total  change  of  angular 
momentum. 

Time 

Fig.  64. 

If  the  moment  of  inertia  is  constant,  then  the  area  under  the 

curve  represents  the  total  change  of  angular  velocity. 

As  in  dealing  with  linear  momentum,  we  may  find  the  time- 
average  of  the  torque.  This  is  given  by  the  area  under  the  torque- 
time  curve  divided  by  the  length  of  the  base.    Thus,   . 

The  time-average  of  the  torque  x  the  time 
=  the  total  change  of  angular  momentum. 

Impulsive  Torque 

In  many  problems  we  cannot  measure  the  torque  at  each  instant 
of  time,  either  due  to  the  total  time  being  so  short,  or  for  other 
reasons.  In  such  cases,  all  we  can  do  is  to  measure  the  total  effect 

produced  by  the  torque  during  the  time  concerned.  This  is  given 

us  by  the  total  change  of  angular  momentum,  and  gives  us  the 
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product  of  the  torque  and  time,  or  the  area  under  the  torque-time 
curve.  This  we  may  call  the  impulsive  torque  but  we  must 

remember  that  it  is  not  a  true  torque  but  a  product  of  force^  dis- 
tance and  time,  i.e.  a  product  of  an  impulse  and  a  distance. 

Example  (1).     Two  masses  M  and  m  are  supported  by  an  in- 
extensible  string  which  passes  over  a  pulley  as 
shewn  i7i  Jig.  65.    Find  the  acceleration. 

Let  I  be  the  moment  of  inertia  and  r  be  the 

radius  of  the  pulley. 

The  forces  acting  are  shewn  on  the  figure. 

Let  a  =  the  acceleration  of  M  downwards. 

We  have  for  M, 

Mg-Tj=Ma       (1). 

Form,  T^-mg  =  ma       (2). 

For  the  pulley  the  resultant  torque 

=  (Ti-T,)r. 

The  angular  acceleration 

.-.   (T,-T,) 

Adding  (1)  and  (2)  we  get, 

la 

r 
,(3). 

Fig.  65. 

From  this  and  (3), 
(T2  -  Tj)  =3  (M  +  m)  a  -  (M  -  7n)  g. la      / 

-72=(M+»^)a-(M-m)5r, 

I.e. The  acceleration  =  ~   JL  . 
M  ->-m  + 

We  can  also  find  Tj  and  T^  if  desired. 

It  will  be  noted  that  here  T^  and  T2  are  different,  since  the 
pulley  requires  a  turning  moment  to  change  its  angular  velocity. 
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In  example  (3)  on  p.  64,  we  assumed  that  the  moments  of 

inertia  of  the  pulleys  were  negligibly  small,  and  in  that  case  we 
had  the  tensions  in  the  string  on  the  two  sides  equal. 

Example  (2).  A  gas  engine  works  against  a  constant  torque  of 

525  Ihs.  ft.  If  the  gas  supply  is  suddenly  cut  off  and  the  resisting 
torque  remains  the  same,  find  in  how  many  revolutions  the  speed 
will  falljrorn  250  to  240  revolutions  per  minute. 

The  fiy wheel  of  the  engine  has  a  mass  of  3  tons  and  it  may  he 
considered  concentrated  at  a  radius  of  3  feet. 

Since  the  resisting  torque  is  constant  the  speed  will  decrease 
uniformly. 

rPk     ̂ '  4J.U  A       250  +  240 
Ine  time  average  of  the  speed  ==   

2i 

=  245  revolutions  per  minute. 

If  t  is  the  time  in  seconds  for  the  fall  in  speed,  then  the  angular 

retardation  =  —  revolutions  per  minute  per  second 

207r       ,. 

=  -^TT-  radians  per  sec.  per  sec. 

The  torque  =  the  change  of  angular  momentum  per  second. 

525  X  32  =  3  X  2240  x  3=  x 
TT 

t  = 

3t' 

9  X  224
0  

X  TT 

525  X  32 

=  3-77  seconds. 

.'.  The  number  of  revolutions  required 

=  15-4  revolutions. 

Example  (3).  A  flywheel,  of  moment  of  inertia  900  Ih.  ft.  units, 
has  a  fan  attached  to  its  spindle.  It  is  rotating  at  60  revolutions 
per  minute  ivhen  the  fan  is  suddenly  immersed  in  water.    If  the 
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resistance  of  the  water  he  proportional  to  the  square  of  the  speed,  and 

if  the  speed  he  halved  in  3  minutes,  find  the  initial  retarding  couple. 

The  retarding  torque  =  Aw^,  where  \  is  a  constant  to  be  deter- 
mined, and  0)  is  the  angular  velocity  in  radians  per  second. 

By  the  second  law  of  momentum  we  have, 

,  dia 

-Xc 

dt  ' 

where  I  is  the  moment  of  inertia. 

_dt^_I    2 
dlO         X.      CO' 

1 

This  gives, 

Plot-^,i.e.— -=— - doi  retardation 
dt 

and  speed  curve,  using  any  suitable 

scale  for  -  ̂ -  .    This  is  done  in  fiff.  66. 
do)  ^ "" ■" "" ^ "" 

"~ 
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Fig.  66. 

2Tr 
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The  scale  for  speed  is,  1  division  =  ̂   radians  per  second. 

The  scale  for   ^ — ; —  is  such  that  its  value  for  o)  equal  to retardation 

27r  radians  per  second  is  represented  by  5  divisions, 

i.e.  6  divisions  =  T-  x  — —  , 

A       4o7r^ T 

.*.  1  division  = 

207r2X  • 
Now  if  we  take  a  narrow  vertical  strip  between  the  base  and 

the  curve  the  area  =  ̂ r-  x  Sw OO) 

=  the  time  to  change  speed  by  amount  Sa>. 

. .  The  area  under  the  curve  between  w  =77  and  <a  =  2Tr  represents 
180  seconds. 

The  area=  198  small  squares 

=  0-157  Y  seconds. A 

.-.  0157  X  5^  =  180, A 

i.e.  A  -  0-785. 

The  initial  retarding  couple  =  0*785  x  47r^  pdls.  ft. 
=  0  967  lb.  ft. 

Example  (4).  A  tope  is  being  wound  on  to  a  drum  from  a  coil 
on  the  ground,  as  shewn  in  Jig.  67.  The  rope  weighs  1  Ih.  a  foot 
and  the  radius  of  the  drum,  which  may  also  he  taken  as  its  radius 

of  gyration"^,  is  2  feet.  The  mass  of  the  drum  is  80  lbs.  When  the 
drum  starts  there  is  one  complete  turn  of  rope  on  it,  and  it 

accelerates  uniformly  at  the  rate  of  20  revolutions  per  m,inute  per 

second.  Find  the  couple  at  the  end  of  4  seconds.  Neglect  the 
diamieter  of  the  rope. 

*  For  definition  of  radius  of  gyration,  see  p.  105. 
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Let  Ti  and  Tg  be  the  tensions  in  the  rope  at  the  points  shewn 
in  the  figure. 

The  weight  of  the  hanging  part  of  the 
rope  will  be  20g  pdls. 

The  average  speed  during  the  first 
4  seconds 

=  40  revolutions  per  minute. 

The  mass  of  the  rope  wound   on  in 
4  seconds 

40x4 
60 

X  47r  lbs. 

The  mass  of  the  rope  on  the  drum  at 
the  end  of  4  seconds 

=  (f +l)47rlbs. 

=  -^r-  lbs. 
Fig.  67. 

The  moment  of  inertia  of  the  drum  and  rope  on  it 

447r 

=  80  X  22  +  ̂   X  22 

=  504  lbs.  ft.2 

The  speed  of  the  rope  at  the  end  of  4  seconds 

80x47r.    ^  , 
=  — TTTT —  leet  per  second. oO 

Let  C  =  the  couple  in  pdls.  feet  units  on  the  drum.    For  the 
drum  we  have, 

C-2T,  =  504x2-?A?5       (1) 

=  1055  pdls.  ft. 

For  the  portion  of  the  rope  between  the  drum  and  the  ground, 

T,-20^-T,  =  20x^x2    (2) 

=  84  pdls. 
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Considering  the  coil,  the  pull  Tj  has  to  supply  momentum  to 

the  new  portion  of  the  rope  which  is  being  jerked  from  the  coil. 

Ihe  mass  per  second      =  — ^ —  lbs. 

The  change  of  velocity  =  — ^tt"    ̂ ^®^  P^^  second. 60 

T,  = 

From  (2)  and  (3), 

From  (1), 

_  /80  X  47ry ^"1^60"-;  ■ 
=  280  pdls. 

T2  =  84  +  280  +  640 
=  1004  pdls. 

C  -  1055  +  2008 

-  3063  pdls.  ft. 
=  96  lbs.  ft. 

.(3) 

Example  (5).  In  a  press  for  stamping  medals  a  flywheel  is 
keyed  to  a  vertical  screw  which  rotates  in  a  nut  fixed  to  the  frame. 
If  M  is  the  mass,  k  the  radius  of  gyration  of  the  screw  and  wheel, 

n  the  number  of  threads  per  unit  length,  r  the  m^ean  radius  of  the 

screw,  and  fx  the  coefficient  of  friction,  find  an  expression  for  the 
vertical  acceleration  of  the  screw  and  wheel  when  left  to  themselves. 

Imagine  one  complete  turn  of  the  thread  stripped  off  from  the 
nut  and  opened  out  as  shewn  in  fig.  68. 

•^l^ 

\ 

A 

\ 

f^
 ^^ 

1 

n 

^^^^^^v' 

Mg 

1 

y 

<   2i, 

r   

--> 

Fig.  68. 
L.E.D. 



98  ELEMENTARY  DYNAMICS 

Let  R  =  the  normal  pressure  between  the  nut  and  screw.  The 
friction  fxR  will  act  at  right  angles  to  this  and  so  as  to  oppose  the 
motion. 

The  resultant  force  vertically  downwards 

=  M^  -  R  cos  0  —  fiR  sin  0. 

The  horizontal  force  acting  at  a  radius  r 

=  R  sin  6  —  fxR  cos  0. 

Let  a  —  the  linear  axial  acceleration,  and  A  ::=  the  angular  ac- 
celeration.   Then 

an  1 

A      27r      27m* 
We  may  apply  the  second  law  of  momentum  to  the  two  com- 

ponents of  the  motion  and  we  have 

M^  —  R  (cos  0  +  fjL  sin  0)  =  Ma        (1), 

and  R(sin^-/xcos^)r=  MF.  A     (2). 

Eliminating  R  from  (1)  and  (2)  we  get 

Mk^ .  A    /cos  0  +  iJi  sin  ̂ \ 
Mo   .  ( -T—^ —   ^  I  =  Ma. 

r         \sin  d  —  fx  cos  0/ 

.'.    The  vertical  acceleration 
ik^  27rn  /27rnr  +  /aX         ] 

\     r      \2'7rnr  —  fxJ        J 

If  /x,  =  0  this  reduces  to  - — p   — —  +  1 

Example  (6).  In  an  inward-flow  water  turbine  the  water 
enters  the  wheel  at  a  radius  of  \\  inches^  with  a  velocity  of  ̂Q  feet 

per  second,  and  is  inclined  at  10°  to  the  tangent  at  the  point  of 
entry.  The  water  leaves  the  wheel  with  a  velocity  of  10  feet  per 

second  at  a  radius  of  5  inches,  and  in  a  direction  inclined  hack- 
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wards  at  50°  to  the  tangent  at  the  point  of  exit.  If  400  cubic  feet 
of  water  per  minute  pass  through  the  wheel,  and  there  is  no  shock 
at  entry,  find  the  turning  moment  produced. 

Fig.  69. 

The  mass  of  water  per  second 400x62-5 
60 

-417  lbs. 

The  moment  of  momentum  initially  ~  450  x  36  x  OC. 

„  „  finally     =-417xlOxOD, 
where  OC  and  OD  are  the  perpendiculars  from  O  on  to  the  actual 

directions  of  motion  of  the  water  at  entry  and  exit. 

The  turning  moment 

=  Change  of  moment  of  momentum  per  second 
=  417  X  36  X  OC  +  450  x  10  x  OD 

=  417  {36  X  ii  cos  10°  +  10  X  3%  cos  50°}  pdls.  ft. 

=  ̂ y.  {36  X  1-1  X  0-985  +  10  x  ̂ ^  x  0-643}  lbs.  ft. 
=  458  lbs.  ft. 

7—2 
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500  r.p.m. 

Fig.  70. 

Example  (7).  Two  toothed  wheels,  of  ■moiments  of  inertia  4 
and  2  lbs,  ft.  units  respectively,  are 

arranged  on  -parallel  shafts.  The 
first  wheel  is  rotating  uith  a  speed 

of  500  r.p.m.  when  the  second  wheel, 
which  is  initially  at  rest,  is  suddenly 

made  to  mesh  with  it,  by  sliding  the 

second  tvheel  along  tlie  shaft.  If  the 

number  of  teeth  on  the  wheels  are  28 

and  20  respectively,  find  the  speed  of  each  wheel  immediately  after 
they  are  in  mesh. 

When  the  wheels  are  in  mesh,  since  the  circumferences  have 

the  same  speed,  we  have 

r^~  20~n^' 
where  n^  and  n^  are  the  speeds,  in  revolutions  per  minute,  after 
meshing. 

Let  P  =  the  tangential  component  of  the  impulse  between  the 
teeth  of  the  wheels  during  the  period  of  meshing. 

|(500-«.). 

For  (1), 

For  (2), 

P .  ri  =  4 

P.i- 0     2t i.e. ri      2  (500  -  ni) 

1000  -  2n, 
i.e. 

and 

or 

and 

28 
20 

^2=  l-4ni, 

1000-2??.!  =  1-42x^1, 
1000 
3-96 

1400 3-96 

253  r.p.m. 

354  r  p.m. 
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Moment  of  Inertia 

The  values  of  the  moment  of  inertia  of  various  bodies  can  be 

obtained  by  employing  the  integral  calculus  to  effect  the  sum- 
mation required,  or  we  may  employ  certain  graphical  methods. 

Here  we  will  state  the  values  for  a  few  bodies  which  are  frequently 

met  with  in  rotation  problems. 

^    BoiUh's  Rule  for  Moment  of  Inertia 

The  following  simple  rule  for  rapidly  obtaining  the  moment  of 

inertia  of  many  bodies  dealt  with  in  dynamics  will  be  found  very 
useful. 

The  moment  of  inertia  about  a  symmetrical  axis  through  the 

centre  of  gravity 

Sum  of  the  squares  of  the  perpendicular  semi-axes 

3,  4,  or  5 
3,  is  to  be  used  for  a  rectangular  or  square  body. 

4,  is  to  be  used  for  an  elliptical  or  circular  body. 

5,  is  to  be  used  for  an  ellipsoidal  or  spherical  body. 

Let  us  see  how  this  is  applied  : 

Rectangular  plate 

Suppose  we  want  the  moment  of  inertia  about  ox.    Here  the 

only  axis  perpendicular  to  the  axis  con- 

sidered is  the  2/-axis,  the  thickness  being 
supposed  negligibly  small. 

/l2
 

Similarly, 

and 

M 

3 

rVMA^ 

where  oz  is  the  axis  perpendicular  to  the 
plane  of  the  figure. 

K--  b-- Fig.  71. 
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Circular  disc  or  cylinder 

Let  r  =  the  radius. 

_  M  (r^  +  7-2)  _  Mr2 

For  a  thin  disc 

Sphere 
I  =!^'-i 

L.=  M 

7^  +  r 

Moment  of  Inertia  about  any  A  ocis 

For  determining  the  moment  of  inertia  about  an  axis  which 

does  not  pass  through  the  centre  of  gravity  we  may  employ  the 
following : 

The  moment  of  inertia  of  a  body  about  any  axis  is  equal  to  the 

mom,ent  of  inertia  about  a  parallel  axis  through  the  centre  of 

gravity  plus  the  product  of  the  mass  and  the  square  of  the  distance 
between  the  two  axes. 

Fig.  73. 

Referring  to  fig.  73,  let  CD  be  an  axis  through  the  centre  of 

gravity  parallel  to  the  axis  AB.    Then 
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=  2m  (z  +  hy 

=  2mz^  +  ̂ mh^  +  Sm .  2hz 

=  ̂ m^  +Mh^+2h  '%mz, 
where  M  =  the  total  mass. 

Now  %mz^  =  IcD  > 

and  "Xmz  =  the  moment  of  the  mass  of  all  the  particles  about  CD 
=  zero,  since  the  centre  of  gravity  lies  on  CD.    See  p.  117. 

Plane  Lamina 

Another   proposition    which    is    often    useful    in    determining 
moments  of  inertia  is  as  follows  : 

In  the  case  of  a  plane  lamina  or  flat  body  in  which  the  thickness 

is  negligibly  small  the  moment  of  inertia  about  an  axis  perpendicular 

to  the  plane  is  equal  to  the  sum,  of  the  moments  of  inertia  about  any 

two  axes  in  the  plane  mutually  at  right  angles  to  each  other  and 
intersecting  on  the  first  axis. 

Fig.  74. 
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Take  the  axis  of  oz  perpendicular  to  the  plane,  and  the  axes  ox 
and  07/  in  the  plane. 

If  m  is  the  mass  of  a  particle  A,  fig,  74,  then 

=  ̂ m  0A2 

=  2r/i  (ON^  +  NA2) 

=  "^mx^  +  ̂ my^ 

Hoop  about  a  diameter 

The  moment  of  inertia  I^^  for  a  thin-rimined  hoop  of  radius  r 

and  mass  m  equals  mr^. 

But  lox   =    loy, 

Hollow  cylinder  about  its  axis 

Let  R  and  r  be  the  external  and  internal  radii  respectively. 
Let  h  be  the  height,  and  p  be  the  density. 

Treat  the  hollow  cylinder  as  the  difference  between  two  solid 

cylinders  of  radii  R  and  r  respectively. 

R2  ^    r^ 

I  =  p-rrR^h  ̂  —  pirr^h  - 

p.(R^-^).(?!±l) 
R^  +  r' 

where  M  is  the  mass. 

Thin  rod 

This  may  be  treated  as  a  thin  rectangular  plate  in  which  two 

of  the  axes  are  negligibly  small. 

Let  I  be  the  length  of  the  rod  and  m  be  the  mass. 
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The  moment  of  inertia  about  an  axis  through  the  middle 

=  7n.'  (Routh' o 

s  rule) 

mP 
-12- 

The  moment  of  inertia  about  one end 

Radius  of  Gyration 

In  the  case  of  a  thin-rimmed  hoop  all  the  mass  may  be  con- 
sidered to  act  at  the  same  radius,  viz.  the  radius  of  the  hoop  r,  and 

hence  the  moment  of  inertia  about  an  axis  through  the  centre 

perpendicular  to  the  plane  =  mr^,  where  m  is  the  total  mass. 

In  the  case  of  a  body  where  the  mass  is  at  different  distances 

from  the  axis  of  rotation,  it  is  often  convenient  to  imagine  it  re- 
placed by  a  simpler  body  having  all  the  mass  concentrated  at  the 

same  radius.  This  body  must  have  the  same  dynamical  effect  so 
far  as  rotation  is  concerned  as  the  original  body. 

If  M  =  the  mass  of  the  original  body, 

I  =  the  moment  of  inertia  of  the  original  body, 

and     k  =  the  radius  at  which  we  may  imagine  the  whole  mass  to 
be  acting,  then 

U¥  =  I, 

or  k^  =  —  . M 

k  is  called  the  radius  of  gyration. 

For  example,  the  moment  of  inertia  of  a  flywheel  =  6750  f t.^  lbs. 
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The  mass  of  the  wheel  =  1100  lbs. 

.'.  The  radius  of  gyration  =  sj^\ 

50 

TOTT 
=  248  feet. 

Example  (8).  The  figure  shews  a  sheave  of  an  eccentric,  the 
sheave  consisting  of  a  steel  disc  of  radius  6  inches  and  thickness 

1  irtch,  with  a  hole  of  4  inches  diameter,  the  centre  of  which  is 

3  inches  from  the  centre  of  the  disc.  Find  the  moment  of  inertia  of 
the  sheave  about  the  axis  of  the  hole. 

the 

Fig.  75. 

The  moment  of  inertia  about  A  =  the  moment  of  inertia  of  the 

complete  disc  about  B  +  the  mass  of  the  complete  disc  x  AB^ 
moment  of  inertia  of  the  part  removed  for  the  hole  about  A 

=  ̂ ^'^^^12  1  2    H4)r^"^36^12^^> 
where  p  is  the  density,  i.e.  480  lbs.  per  cubic  foot, 

_307r_107r 

=  5-8  lbs.  ft.2 
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Examples.    Chapter  IV 

1.  Define  the  term  moment  of  inertia  as  applied  to  a  revolving  mass. 

Awheel  of  mass  50  lbs.,  rotating  at  400  revolutions  per  minute,  is  brought 
to  rest  in  10  seconds  by  the  application  of  a  brake.  Find  the  average 
frictional  torque  during  the  10  seconds,  if  the  whole  mass  of  the  wheel  may 
be  considered  as  situated  at  18  inches  from  the  axis. 

2.  A  wheel  of  200  lbs.  weight  and  radius  of  gyration  2  feet  is  mounted  on 
smooth  bearings.  The  axle  is  3  inches  in  diameter,  and  a  weight  of  40  lbs. 
hangs  from  a  string  wrapped  round  the  axle.  With  what  acceleration  will 
the  weight  fall  ? 

If  after  the  weight  has  fallen  through  6  feet  from  rest  the  string  is  cut  and 

a  retarding  tangential  force  of  20  lbs,  applied  on  the  axle,  how  many  revolu- 
tions will  the  wheel  make  before  coming  to  rest  ? 

3.  A  uniform  circular  disc  of  weight  W  is  mounted  with  its  axis  horizontal 
and  a  light  string  passing  over  it  carries  weights  M  and  M  +  m,  at  its  ends. 
If  the  string  does  not  slip  on  the  disc,  shew  that  when  the  system  is  in  motion 
the  acceleration  of  the  weights  is  equal  to 

2m 

^4M+2m  +  W 

Find  also  the  values  of  the  tensions  in  the  two  portions  of  the  string,  and 
the  resultant  thrust  on  the  bearings  of  the  disc. 

4.  The  axle  of  a  flywheel  is  6  inches  in  diameter.  A  weight  of  20  lbs., 
hung  at  the  end  of  a  fine  flexible  wire  which  is  wrapped  round  the  axle,  is 
just  sufficient  to  overcome  friction,  and  when  put  in  motion,  falls  with  a 
constant  velocity.  When  an  additional  50  lbs.  is  hung  on  the  wire  it  descends 

■mth  a  constant  acceleration  equal  to  :^.    Find  the  value  at  the  end  of 

10  seconds,  of  (1)  the  velocity  of  the  weight,  (2)  the  angular  velocity  of  the 
flywheel.    Find  also  the  moment  of  inertia  of  the  flywheel. 

5.  In  the  previous  question  if  instead  of  the  additional  50  lbs.  being  hung 
on  the  wire,  the  weight  of  20  lbs.  is  pulled  downwards  with  a  steady  force  of 
50  lbs.  wt.,  what  will  be  its  acceleration  ? 

6.  A  propeller  and  shaft,  the  moment  of  inertia  of  which  is  500  lbs.  ft.2 
units,  is  observed  to  slow  up  in  the  manner  given  in  the  table  below.    Find 
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the  retarding  torque  at  speeds  of  800  and  300  revolutions  per  minute,  and 
the  number  of  revolutions  made  during  this  fall  of  speed. 

Speed, 
revs,  per  min. 

1000 875 
765 

645 550 460 375 305 240 

Time, 
seconds 

0 15 30 
45 60 

75 

90 
105 120 

7.  The  drum  of  a  winch  has  an  effective  diameter  of  12  inches.  The  axis 

is  horizontal  and  40  feet  above  the  ground.  One  end  of  a  chain,  weighing 
2  lbs.  per  foot,  is  fixed  to  the  drum,  and  the  chain  hangs  vertically  to  a  loose 
heap  ou  the  ground  where  there  are  40  feet  of  chain.  The  drum  is  rotated  at  a 
constant  speed  so  that  60  feet  of  chain  are  wound  up  per  minute.  Neglecting 
friction,  find  the  couple  required  to  rotate  the  drum.  Draw  a  curve  shewing 
the  couple  during  the  last  40  seconds  before  the  chain  is  completely  wound  up. 

8.  An  oscillating  rotary  valve  has  a  motion  given  by  the  equation, 
^  =  3sin4<, 

where  6  is  the  angle  turned  through  in  time  t.    Shew  that  the  torque  varies 
directly  as  the  angle  turned  through. 

©.  A  disc,  the  moment  of  inertia  of  which  is  300  lbs.  ft.^  units,  is  retarded 
from  a  speed  of  50  revolutions  per  minute  by  a  resisting  couple  which  varies 

directly  with  the  speed.  If  the  time  for  the  speed  to  be  reduced  to  20  revolu- 
tions per  minute  is  4  minutes,  find  the  initial  retarding  couple. 

10.  In  a  rifle  barrel  the  grooves  make  one  complete  turn  in  10  inches.  A 

bullet  of  mass  0-4  ounce  and  radius  of  gyration  0*11  inch  has  a  muzzle  velocity 
of  2000  feet  per  second.  What  are  the  values  of  the  effective  impulse  and 
impulsive  couple  exerted  on  the  bullet  during  its  travel  along  the  barrel  ? 

11.  In  order  to  determine  the  moment  of  inertia  of  a  flywheel  and  its  shaft 

it  was  speeded  up  by  a  belt  which  was  then  thrown  out  of  gear.  When  coming 
to  rest  under  its  own  friction  it  was  found  to  take  42  seconds  to  change  the  speed 

from  200  to  180  revolutions  per  minute.  With  a  brake  giving  a  constant  torque 

of  18  lbs.  feet  it  took  only  18  seconds  to  change  from  200  to  180  revolutions 

per  minute.    Find  the  moment  of  inertia  of  the  flywheel  and  shaft. 

12.  A  cylindrical  nut,  whose  internal  and  external  radii  are  1  inch  and 
4  inches  respectively,  works  along  a  vertical  screwed  shaft.  The  pitch  of  the 
screw  is  |  inch  and  the  coefficient  of  friction  J .  If  the  nut  be  set  turning  so 

as  to  travel  down  the  shaft,  shew  that  its  linear  retardation  will  be  approxi- 

mately 0-05  foot  per  second  per  second. 
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13.  A  cylinder  rolls  down  a  plane  inclined  to  the  horizontal  at  an  angle  6. 
Shew  that  the  acceleration  of  the  centre  of  the  cylinder  is  |  gr  sin  a. 

14.  As  a  flywheel  rotates  it  winds  up  on  its  axle  a  light  inextensible  string 
which  is  attached  to  a  weight  of  50  lbs.  resting  on  the  ground  in  such  a 
position  that  the  string  is  vertical  when  it  becomes  tight.  The  moment  of 

inertia  of  the  flywheel  is  200  lbs.  ins.^,  and  the  diameter  of  the  axle  is  2  inches. 
Shew  that  at  the  instant  when  the  weight  leaves  the  ground  the  angular 
velocity  of  the  flywheel  is  reduced  in  the  ratio  4  to  5. 

15.  A  uniform  circular  trap-door,  2  feet  in  diameter,  is  to  be  provided  with 
a  stop  in  such  a  way  that  when  the  door  is  thrown  open  against  the  stop  there 
shall  be  no  jar  on  the  hinge.    Find  where  the  stop  must  be  placed. 

16.  A  water  turbine  is  taking  500  cubic  feet  of  water  per  minute.  The 
water  enters  the  wheel  at  a  radius  of  10  inches  and  with  a  velocity  of  25  feet 

per  second  inclined  at  20°  to  the  tangent  at  the  point  of  entry.  If  there  is  no 
shock  at  entry,  and  the  discharge  is  radial,  find  the  turning  moment  on  the 
wheel. 

17.  A  uniform  circular  disc  of  diameter  1  foot  is  rotating  about  an  axis 

through  its  centre  perpendicular  to  its  plane  at  a  speed  of  100  revolutions  per 
minute ;  this  is  brought  up  to  a  stationary  disc  of  the  same  mass  but  of 

diameter  2  feet,  which  is  free  to  rotate  about  the  same  axis.  After  rubbing  the 
two  rotate  together ;  find  the  common  angular  velocity. 

18.  A  door  is  6  feet  6  inches  high  and  2  feet  6  inches  wide  and  weighs 
40  lbs.    Find  the  moment  of  inertia  about  the  hinges. 

19.  A  hollow  sphere  has  an  external  diameter  of  9  inches  and  an  internal 

diameter  of  8  inches.  It  is  made  of  metal  the  density  of  which  is  480  lbs.  per 
cubic  foot.    Find  the  moment  of  inertia  about  a  diameter. 

20.  The  rim  of  a  cast-iron  flywheel  is  rectangular  in  cross-section,  the 
thickness  being  6  inches.  The  outside  and  inside  diameters  of  the  rim  are 

4  feet  and  3  feet  3  inches  respectively.  If  the  density  of  cast-iron  is  460  lbs. 
per  cubic  foot,  find  the  moment  of  inertia  of  the  flywheel.  The  hub  and 
spokes  may  be  omitted. 

21.  A  round  rod,  \  inch  in  diameter,  is  screwed  into  a  solid  sphere  of 
6  inches  diameter,  the  axis  of  the  rod  being  along  a  radius  of  the  sphere.  The 
length  of  the  rod  from  the  end  to  the  centre  of  the  sphere  is  3  feet,  and  both 
the  rod  and  sphere  are  of  steel  the  density  of  which  is  490  lbs.  per  cubic  foot. 
Find  the  moment  of  inertia  about  an  axis  (1)  through  the  centre  of  gravity, 
(2)  through  the  end  of  the  rod. 



CHAPTEE  V 

CENTRIFUGAL  FORCE  AND  CENTRE  OF  MASS 

Centrifugal  Force 

When  we  were  applying  the  second  law  of  momentum  to  rotation 
we  dealt  only  with  the  tangential  components  of  the  forces  acting 

on  the  particles  ;  we  must  now  deal  with  the  normal  forces. 

Suppose  we  have  a  mass  m  rotating  in  a  circle  of  radius  r  with 
an    angular   velocity    w.      We   have    already 

shewn  that  such  a  mass  has,  continually,  an  y-       ̂   \ 
acceleration  towards  the  centre  of  magnitude  /           w        \ 

(oV.    This  means  that  there  is  a  rate  of  change  |                '\        x 
of   momentum  towards   the  centre  equal  to  *             ̂ /         r 
?no>V.    In  order  to  produce  this  rate  of  change  \                     / 

of  momentum  we  must  have  a  force  F  acting  •-  —  --^ 
always  towards  the  centre.   This  force  is  some-  -  ̂     ̂ig-  76. 
times  called  the  centripetal  force. 

Thus,  F  =  m.(i>V...>   (1). 

The  force  may  be  provided,  in  the  case  just  considered,  by 

attaching  the  mass  m  to  the  centre  of  rotation  by  means  of  a  string. 
The  tension  in  this  string  will  be  equal  to  mwV. 

In  the  case  where  m  is  a  small  particle  of  a  body,  the  force 

is  provided  by  an  internal  stress  being  set  up  in  the  material  of 

the  body.  That  this  is  so,  is  well  known,  since  it  is  possible  by 
rotating  bodies  at  sufficiently  large  speeds  to  cause  the  internal 
stresses  set  up  to  be  greater  than  the  material  can  withstand,  with 

the  result  that  the  body  flies  to  pieces.  Many  cases  have  occurred, 

frequently  with  disastrous  results,  where  engine  flywheels,  for 

/ 
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example,  have  suddenly  flown  to  pieces  due  to  the  governor  sticking, 
and  the  speed  increasing  greatly  beyond  the  normal. 

In  dealing  with  cases  of  rotation  where  the  angular  velocity  is 
constant  it  has  become  customary  to  use  the  principles  of  statics 
to  solve  problems.  There  is  a  good  deal  to  be  said  for  this  method, 

but  unfortunately  it  is  often  a  stumbling  block  to  beginners. 
However,  the  method  has  become  so  usual  that  it  is  not  desirable 

to  try  to  change  it,  and  we  must  adopt  it.  In  statical  problems  the 
velocity  is  zero  and  the  rate  of  change  of  momentum  is  zero.  The 
resultant  force  is  therefore  zero.  Now,  taking  the  case  of  the 
rotating  mass  just  considered,  let  us  imagine  that  there  is  a  force 

equal  to  mwV  acting  away  from  the  centre  instead  of  towards  the 

centre,  and  that  instead  of  the  body  having  a  rate  of  change  of 
momentum  it  is  in  equilibrium.  The  resultant  force  on  the  mass 
must  be  zero, 

.*.  F  -  y?icoV  =  0,  ' 

where  F  is  the  pull  in  the  string  towards  the  centre. 

This  imaginary  force  equal  in  magnitude  to  mm'^r  and  acting 
away  from  the  centre  of  rotation,  which  we  apply  to  make  the 
problem  a  statical  one,  is  called  the  centrifugal  force. 

It  is  exactly  equal  in  magnitude  to  the  true  force  which  must  act 
to  produce  the  acceleration  but  is  in  the  opposite  direction.  It  is 

obvious  that  all  dynamical  problems  might  be  treated  as  statical 

problems  if  we  introduce  imaginary  forces  equal  and  opposite  to 
the  rates  of  change  of  momentum.  It  is  often  convenient  to  do 
this. 

Example  (1).  A  mass  of  m  lbs.  is  suspended  fro7n  a  string  of 
length  I  and  is  rotating  in  a  horizontal  circle  of  radius  r.  Find 

the  time  of  one  revolution  and  also  the  tension  in  the  string. 

Such  an  arrangement  is  called  a  conical  pendulum. 

We  will  treat  this  problem  firstly  as  dynamical  and  secondly 
as  statical. 
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(1)  Dynamical. 

Let  T  be  the  tension  in  the  string,  and  w  the  angular  velocity. 

The  resultant  force  vertically  =  T  cos  6  —  mg. 

The  resultant  force  horizontally  =  T  sin  6. 

The  rate  of  change  of  momentum  vertically  =  0. 

The  rate  of   change  of   momentum 

horizontally  (towards  C)  —  moi^r. 
From  the  second  law  of  momentum 

T  cos  6  —  mg  —  0    {a), 

and  T  sin  6  =  mwV    ...{b). 

From  {a)  and  (6), 

^       a     ̂ ^'^ 
tan  ff  -  —  , 

I.e. Fig.  77. 
rcot  Q 

=  ̂  ,  where  h  -  OC, 

J\- 
For  one  revolution  the  angle  turned  through  =  27r. 

9. 
The  time  for  one  revolution 

CO -v/l 

From  (a), 

cos  Q 



CENTRIFUGAL  FORCE 113 

I 

(2)  Statical. 

Apply  a  force  nua^r  as  shewn  in  fig.  78.    We  may  now  treat  the 
mass  m  as  in  equilibrium  under 
the  action  of  the  three  forces, 

T,  mwV,  and  mg. 

Resolving     vertically     and 

horizontally,  we  have 

T  cos  ̂   —  mg  =  0, 

and        T  sin  9  —  rrn^r  =  0. 

From  these,  as  before,  we  get 
I ■T  =  mgy 

ma)V 

mg 

and -A- 
Fig.  78. 

Example  (2).  A  simple  governor  for  operating  the  throttle  valve 
of  a  steam  engine  is  shewn  in  fig.  79.  The  vertical  spindle^  to  which 
is  fixed  the  piece  AB,  derives  its  rotation  from,  the  crank  shaft  of 

the  engine.  The  sleeve  DC  can  slide  up  and  down  the  spindle,  and 

moves  a  lever,  the  forked  end  of  which  fits  in  a  groove  on  the  sleeve. 
This  lever  opens  or  closes  the  throttle  valve. 

It  is  required  to  find  the  total  mass  W  of  the  loaded  sleeve  so  that  the 

angle  CAH  may  be  30°,  when  the  engine  is  moving  at  its  normal  speed 
and  rotating  the  governor  spindle  at  \20  revolutions  per  minute. 
Take  AB  =  CD  =  3  inches. 

CH  -  HA  =  BG  =  GD  =  10  inches. 

The  weight  of  each  hall  =  3  Ihs. 

The  radius  of  the  ball  path  =  (1  -5  +  10  sin  30°) 
=  6*5  inches. 

The  centrifugal  force  per  ball  — 3xl67r"x6-5 
12 

pdls. 
=  267r2. 

Let  P  equal  the  pull  in  each  of  rods  CH  and  DG, 
and      Q  „  „  „  HA  and  GB. 

L.  E.  D. 
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Consider  one  ball  and  resolve  the  forces  vertically  and  hori- 
zontally. 

Fig.  79. 

We  have  P  cos  30'  -  Q  cos  30°  +  3g  =  0^ 

(P  +  Q)sin30°-267r2:=0/' 
or  p  -  Q  =   -^ 

P  +  Q  =  267r2  X  2 

rri  9     96  X  2 .-.    2P  =  527r2- 

=  512-111 

=  401  pdls. 

200-5 
P== 

32 
6-26  lbs.  wt. 
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Revolving  vertically  for  the  sleeve  we  have 

2Pcos30°  =  W^. 
401  X  n/3 

W 
2x32 

=  10-85  lbs.  wt. 

Centre  of  Mass,  or  Centre  of  Inertia 

In  dynamical  problems  when  we  are  dealing  with  a  body  of 

finite  size  and*  not  merely  a  small  particle,  we  may  consider  the 
body  as  consisting  of  a  very  large  (infinite)  number  of  small  par- 

ticles. These  particles  may  be  moving  with  different  velocities, 
e.g.  a  body  rotating  about  an  axis,  and  in  estimating  the  total 
change  of  momentum  we  shall  require  to  find  the  vector  sum  of 

the  changes  of  momentum  of  all  the  particles. 

Take  the  case  of  a  body  the  mass  of  which  may  be  considered 

concentrated  in  one  plane,  e.g.  a  thin  sheet  of  material.  Let  the 

body  be  rotating  about  a  fixed  axis  with  an  angular  velocity  w. 

Fig.  80. 

Suppose  we  take  two  axes  Ox  and  Oy  in  the  body,  for  convenience 
at  right  angles,  and  passing  through  the  axis  of  rotation.  Let  x 

and  y  be  the  coordinates  of  a  particle  of  mass  m  (fig.  80). 
8—2 
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The  rate  of  change  of  momentum  is  rrnn^r^  where  r  =  OA,  and  is 
in  direction  AO. 

The  rate  of  change  of  momentum  in  the  direction  Ox 

=  moi^r  cos  6 

=  moi^x. 

The  rate  of  change  of  momentum  in  the  direction  Oy 
=  moy^r  sin  6 

=  TtHiP-y. 

For  the  whole  body  we  have, 

Total  force  in  direction  xO  =  ̂ nm^x  =  P. 

„  „  yO  =  %mi^^y  =  Q. 

/.    P  =  o>^'^mx, 

and  Ql  =  oy^%my. 

Now  we  can  obviously  find  a  point,  coordinates  S,  y,  say,  in  the 

body  such  that 
M5  =  ̂ mx 

and  My  =  ̂ my, 

where  M  =  the  total  mass  of  the  body, 

%mx 

and  2/=-^. 

The  point  whose  coordinates  are  x  and  y  is  called  the  centre 
of  mass  or  centre  of  inertia  of  the  body. 

The  resultant  force  in  the  direction  xO  and  yO  is  given  by 

and  Q  =  M2/ .  w^ 

and  instead  of  thinking  of  the  individual  particles  we  may  imagine 

the  whole  mass  of  the  body  concentrated  at  the  centre  of  mass. 
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The  single  resultant  force  required  to  produce  the  change  of 
momentum 

=  \/p2  +  a2 

=  Ma)2  OG^ 

where  G  is  the  centre  of  mass  of  the  body. 

The  centre  of  gravity  of  a  body  is  the  point  through  which 
the  resultant  force  on  the  body  due  to  gravity  always  acts,  no 
matter  what  the  position  of  the  body. 

It  is  easy  to  shew  that  the  centre  of  gravity  coincides  with  the 
centre  of  mass. 

In  fig.  80  imagine  the  weight  of  each  particle,  such  as  m  at  A, 
to  act  at  right  angles  to  the  plane  of  the  figure. 

Let  X  and  y  be  the  coordinates  of  the  centre  of  gravity.  Taking 
moments  about  the  axes  Oy  and  Ox,  we  have 

M^  xx'  =  ̂ mgx, 

i.e. 

and 

i.e. 

From  the  previous  article  we  see  that,  x=x,  and  y'  =  y,  and 
hence  the  centre  of  gravity  coincides  with  the  centre  of  mass. 

Example  (3).  A  motor  om,nibus,  when  fully  loaded^  weighs 
6^  tons  and  the  height  of  the  centre  of  gravity  is  4  feet  10  inches 

above  the  ground,  and  may  be  assumed  to  be  in  the  vertical  plane 
midway  between  the  wheels.  The  effective  breadth  of  the  wheel  base 

is  6  feet  8  inches.  Assuming  no  side  slip,  what  is  the  maximum, 

speed  at  which  the  omnibus  can  take  a  corner  of  5  yards  mean 
radius  without  beginning  to  overturn  ? 

x' 

%m,x ~     M    ' 

Ug 

xy' 

=  ̂fngy, 
y'
 

^my 

M 
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Th^,  omnibus  keeps  the  middle  of  the  road  so  that  the  wheel  base 
is  horizontal. 

What  minimum,  coefficient  of  friction  is  required  to  prevent  side 
slip? 

T 

1- i 
4'  10' 

T 
mg 15 

x« 

1^      6'8"      ^ 

Fig.  81. 

Let  V  —  the  maximum  gpeed  in  feet  per  second,  and  m  =  the 
mass  of  the  loaded  omnibus. 

The  acceleration  of  the  centre  of  gravdty  =  — 

15 feet  per  sec.  per  sec. 

The  centrifugal  force  acting  at  the  centre  of  gravity  =  ̂ k"  • 

When  overturning  is  about  to  begin  the  pressure  between  the 
inner  wheels  and  the  road  will  be  zero. 

Let  R  =  the  normal  pressure  on  the  outer  wheels,  and  P  —  the 
tangential  pressure  preventing  skidding. 
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Taking  moments  about  A  we  have 

'^'x58-m^x40  =  0, 
,     40  X  15  X  32 

i.e.  ^  =   gg   =  333, 

.•.  V  =  18-2  ̂ eet  per  second 
=  12*4  miles  per  hour. 

For  P  we  must  have 

pdls. 

15 

6-5  X  2240  X  18-2^ 
"  

15 

=  4*5  tons  wt. 

Similarly  R  =  mg  pdls. 
=  6*5  tons  wt. 

P 
The  coefficient  of  friction  =  - 

R 

_4;5 

"6-5 

=  0-69. 

Cant  on  Railway  Curves 

When  a  train  travels  along  a  curved  track  a  force  will  be  re- 
quired towards  the  centre  of  curvature  in  order  to  provide  the 

necessary  change  of  momentum.  If  the  track  is  level,  as  is  usual 

in  the  case  of  tramways,  the  flanges  on  the  wheels  bear  against 

the  outer  rail.  In  railway  curves  the  outer  rail  is  raised  above 
the  inner  rail,  and  by  this  means,  for  a  definite  speed,  all  side 
thrust  on  the  flanges  may  be  avoided.  The  amount  the  outer  rail 
is  raised  above  the  inner  is  called  the  cant.  If  the  speed  of  the 
train  exceeds  that  for  which  the  cant  was  calculated  the  outer 

flange  has  to  transmit  some  thrust ;  if  the  speed  is  less  than  that 



120 ELEMENTARY  DYNAMICS 

for  which   the  cant  was   calculated   the  inner  flange  will  bear 
against  the  rail. 

We  will  investigate  this. 

Fig.  82. 

In  fig.  82  let  G  be  the  centre  of  gravity,  P  and  Q  tlie  normal 
thrusts  on  the  wheels,  a  the  mean  distance  between  them,  S  the 

flange  thrust,  and  v  the  speed  in  feet  per  second. 

The  acceleration  towards  the  centre  of  curvature  is  - ,  where  R R 

is  the  radius  of  curvature.     Put  on  a  centrifugal  force    ,  and R 

we  may  then  treat  the  problem  as  a  statical  one. 

Resolving  all  the  forces  parallel  and  perpendicular  to  the  track, 
we  have  : 

Perpendicular  to  the  track 

P  +  Q  -  Mg  cos 
0^0 

(1). 
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Parallel  to  the  track 

S  +  M^sin^-— -cos^  =  0      (2). R 

If  S  is  zero,  i.e.  no  side  thrust  on  the  flanges,  we  get  from  (2) 

tan  ̂   =  —  . 

Let  h  =  the  cant,  then  tan  6  =    ,  =  - ,  since  h  is  small 

compared  with  a, 

i.e.  the   cant  =  — . 

Also  S  ==  M  (  — cos^  — ^  sin^ 

  ^  .  -  j ,  if  ̂   is  small. 

Example  (4).    Let  R  =  660  feet, 

V  =:  40  miles  per  hour 

=  — 5 —  feet  per  second, o 

a  =  i  feet  8 J  inches 
56-5  _    ̂  

^-^feet. 
The  cant  of  the  outer  rail  {h)  for  no  side  flange  thrust 

56-5x88^x4 
~  12x660x9x32 
=  0-765  foot 

=  9|^  inches.      , 

For  a  speed  of  60  miles  per  hour,  the  side  thrust  of  the  flanges 

(-882      ̂ ^     0-765  X  121 

=  M  {11 -7 -5-2 1  absolute  units. 
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Or  taking  M  =  2240  lbs.  we  get, 

The  thrust  per  ton 
_  2240x6-5 

~         32 

=  455  lbs.  per  ton. 

Stress  in  the  Rim  of  a  Flywheel 

Let  us  consider  a  flywheel  in  which  the  thickness  of  the  rim  is 

small  compared  with  the  mean  radius,  the  flywheel  consisting  of 

a  heavy  rim  connected  to  the  hub  by  spokes. 

Let  p  =  the  density  of  the  metal  of  the  wheel, 

Q)  =  the  angular  velocity  of  the  wheel, 

r^the  mean  radius,  i.e.  the  radius  of  the  centre  of  mass 
of  a  cross- section  of  the  rim. 

Take  a  small  part  of  the  rim  subtending  an  angle  SO  at  the 

centre  of  the  wheel  (fig.  83). 

Let  a  =  the  area  of  cross-section  of  the 
rim. 

P  =  the  total  pull  on  the  area  at  A  or  B 
in  absolute  units. 

The  mass  of  the  element  AB  =  par W. 

The  acceleration  towards  the  centre  C 

=  wV. 

The  centrifugal  force  on  the  element 

=  p.a.rKoi\8e, 

and  acts  at  the  centre  of  mass  of  the  ele- 
ment. 

This  centrifugal  force  has  to  be  balanced 

by  the  components  of  the  forces  P  at  A 
and  B, 

on        •      ̂̂  
2P.  sm  — par'^  (o^  80. 
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But  since  BO  is  very  small,  we  may  write 

.    SO     SO 

and  we  get  P .  80  =  par^m^SOy 

or  P  =  par^tt)^. 

Let/=  the  internal  force  per  unit  area  at  A  or  B,  then 

P 

a' 

=  pv^  absolute  units, 

where  v  is  the  velocity  of  the  centre  of  mass  of  a  cross-section 
of  the  rim. 

EiXaonple  (5).  A  flywheel  is  made  of  cast-iron  which  breaks 
when  subjected  to  a  pull  of  10  tons  per  sq.  inch.  The  external 
diameter  is  %  feet  and  the  thickness  of  the  rim,  is  6  inches.  What  is 

the  speedy  in  revolutions  per  minute,  which  will  cause  the  flywheel 

to  fly  to  pieces  ? 

The  density  of  ca^st-iron  =  470  lbs.  per  cubic  foot. 

Let  N  =  the  required  speed. 

Then  c.  =  -g^, 

and  V  =  -^jr-  X  -^  feet  per  second. 

The  breaking  stress  =  10  x  144  x  2240  x  g  pdls.  per  sq.  foot. 

Using  the  formula,  y^p-w^,  we  have 

470  X  47r2x  n2x7-52 10  X  144  X  2240  X  32  = 

1202 
or 

470  x4x  3-142 X 7-52 
=  1195  revolutions  per  minute. 
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Examples.    Chapter  V 

1.  A  bucket  of  water  is  swung  round  in  a  vertical  circle  of  26  inches  radius. 
What  is  the  minimum  speed  of  rotation  if  none  of  the  water  is  spilled  ? 

2.  A  particle  is  attached  to  the  end  of  a  string  of  length  I,  the  other  end 
of  which  is  fixed,  and  moves  as  a  conical  pendulum  making  n  revolutions 
per  minute.    Find  the  radius  of  the  circular  path  which  it  describes. 

A  mass  of  10  lbs.  rotates  as  a  conical  pendulum  at  the  end  of  an  elastic 
string,  of  unstretched  length  3  feet,  and  makes  40  revolutions  per  minute. 
If  the  string  is  stretched  ̂ ^^  of  its  length  by  the  weight  of  1  lb.  find  the  length 
of  the  string  during  the  motion. 

3.  The  spindle  EB  shewn  in  fig.  84  receives  vertical  support  only  at  E, 

and  is  supported  horizontally  by  collars  at  A  and  B,  DC  is  a  stiff  arm  rigidly 
attached  to  the  spindle  and  carrying  a  weight  at  C.  If  A B  is  8  inches,  DC 
10  inches,  D  midway  between  A  and  B,  and  the  weight  at  C  10  lbs.,  find  the 
horizontal  forces  at  A  and  B. 

Also  find  these  forces  when  the  spindle  is  rotating  freely  at  100  revolutions 

per  minute,  and  determine  the  speed  of  rotation  for  which  the  reaction  at  A 
is  zero. 

Ej, 

mm////// 

G 

Fig.  84. 

4.  A  particle  of  mud,  sticking  to  the  rim  of  a  motor-car  wheel  travelling 

at  20  miles  per  hour,  leaves  it  when  situated  at  a  point  30°  behind  the  vertical 
line  between  the  centre  of  the  wheel  and  the  road.  Determine  its  velocity 

relative  to  the  road,  the  mudguard,  and  the  top  of  the  wheel  respectively. 

To  what  forces  and  to  what  accelerations  is  the  particle  subjected  before  it 
leaves  the  wheel  ? 
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6.   The  governor  of  a  steam  engine,  when  making  210  revolutions  per 

minute,  takes  up  the  position  shewn  on  the  sketch. 

If  each  ball  weighs  1  lb.,  determine  the  weight  W. 

Supposing  the  speed  of  the  engine  to  increase  2 

per  cent,  before  the  throttle  valve  moved,  what  pull 
would  the  governor  exert  on  the  throttle  valve 
lever? 

6.  A  steam  roundabout  revolves  four  times  a 
minute.  A  wooden  horse  on  the  roundabout  is 

suspended  from  the  roof  by  an  iron  rod,  and  the 
centre  of  gravity  of  the  horse  and  the  man  on  it  is 
at  a  distance  of  20  feet  from  the  axis  about  which 
the  roundabout  turns.  Find  the  angle  which  the 

suspending  rod  makes  with  the  vertical.  Find  also 
the  horizontal  displacement  of  the  centre  of  gravity 

caused  by  centrifugal  force,  supposing  this  centre  of  gravity  to  be  at  a  dis- 
tance of  5  feet  from  the  point  of  suspension. 

Fig.  85. 

7.  A  car  weighing  30  cwt.  is  running  at  15  miles  per  hour  round  a  curve 
of  60  feet  radius  on  a  level  road.  What  horizontal  force  perpendicular  to  the 
direction  of  motion  must  be  exerted  by  the  ground  on  the  wheels  of  the  car? 

Assuming  that  the  grip  of  the  outer  wheel  is  sufficient  to  prevent  skidding, 
find  at  what  speed  the  inner  wheel  will  begin  to  lift  off  the  ground.  The  width 
of  the  wheel  base  is  4  feet,  the  centre  of  gravity  is  3  feet  above  the  ground, 
and  the  given  radius,  60  feet,  is  the  radius  of  the  circle  midway  between  the 
tracks  of  the  inner  and  outer  wheels. 

8.  A  motor-car  track  is  designed  to  allow  of  cars  running  round  a  curve 
of  500  feet  radius  at  60  miles  an  hour  without  any  frictional  side  pressure 
between  the  tyres  and  the  road  surface.  Find  the  slope  to  which  the  curved 
part  of  the  track  must  be  banked  up,  and  the  side  pressure  produced  per  ton 
of  car  when  the  speed  is  80  miles  an  hour. 

9.  A  uniform  disc  is  mounted  on  an  axle  which  passes  through  its  centre 
O.  A  mass  of  25  lbs.  is  clamped  to  the  disc,  its  centre  of  gravity  being  at  a 
point  A  distant  2  feet  from  the  centre  O,  and  another  mass  of  40  lbs.  is 

clamped  with  its  centre  of  gravity  at  B  distant  2*5  feet  from  O.  The  angle 
AOB  is  120°.  Find  the  resultant  force  on  the  axle  due  to  the  rotation  of 
these  masses,  when  the  disc  is  making  200  revolutions  per  minute. 
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lO.  In  the  shaft  governor,  shewn  diagrammatically  in  fig.  86,  the 
ball  levers  are  pivoted  to  a  piece  D 
which  is  fixed  to  the  shaft  F.  For  the 

position  shewn,  the  pull  in  the  springs 
connecting  the  balls  is  150  lbs.,  and  there 
is  a  force  on  the  sleeve  along  the  axis  of 
the  shaft  equal  to  115  lbs.  In  addition  to 
this  there  is  a  maximum  axial  force  on 

the  sleeve  due  to  friction  of  10  lbs. ,  which 

may  act  in  either  direction.  Find  the  two 
extreme  speeds  at  which  the  shaft  may  run 

without  the  sleeve  of  the  governor  moving  ^* 
along  it.    The  length  of  AB  is  6  inches;    the  length  of  BC  is  3|  inches; 
the  balls  are  12  inches  apart  and  each  weighs  15  lbs. 

11.  A  cast-iron  flywheel  has  a  mean  diameter  of  4  feet.  If  the  mean  tensile 
stress  in  the  rim  is  to  be  limited  to  1000  lbs.  per  sq.  inch  find  the  maximum 

allowable  speed  of  the  wheel.    A  cubic  foot  of  cast-iron  weighs  470  lbs. 

12.  What  is  the  side  pressure  between  a  train  weighing  300  tons  and  the 
rails,  when  the  train  is  going  round  a  curve  of  120  yards  radius  at  30  miles 
per  hour,  the  rails  being  on  the  same  level?  What  should  be  the  cant  for  no 
side  pressure  with  a  speed  of  30  miles  per  hour  if  the  gauge  is  4  feet  8^  inches? 
With  this  cant,  what  will  be  the  side  pressure  if  the  speed  is  45  miles  per  hour? 

13.  A  belt  the  mass  of  which  is  p  lbs.  per  foot  length  passes  round  half  the 
circumference  of  a  pulley  wheel,  the  speed  of  the  belt  being  v  feet  per  second. 
If  Tj  and  Tg  be  the  tensions  in  lbs.  in  the  two  sides  of  the  belt,  shew  that, 
neglecting  the  weight  of  the  belt,  the  total  pull  on  the  pulley  is  equal  to 

(  2pv^ ' 
Ti-fT, lbs. 

14.  The  wheel  base  of  a  steam  tractor  weighing  16  tons  is  6  feet  10  inches 
across  and  the  distance  between  the  axles  when  they  are  parallel  is  10  feet 
10  inches.  When  going  round  a  curve  the  distances  between  the  points  of 
contact  of  the  wheels  and  the  ground  are  11  feet  4  inches  for  the  outside 

pair,  and  9  feet  4  inches  for  the  inner  pair.  If  the  speed  is  6  miles  per  hour, 
find  the  force  tending  to  shift  the  tractor  sideways. 

15.  A  railway  line  over  a  bridge  is  curved,  the  radius  of  the  curve  being 
400  yards.  Find  the  side  thrust  on  the  bridge  when  a  locomotive  weighing 
90  tons  passes  over  at  a  speed  of  30  miles  per  hour. 
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If  the  gauge  is  4  ft.  8|  inches,  find  how  much  the  outer  rail  must  be  raised 
above  the  inner  rail  in  order  that  there  shall  be  no  thrust  on  the  flange. 

16.  A  casting  weighing  6  lbs.  is  bolted  to  the  face-plate  of  a  lathe,  for  the 
purpose  of  machining,  in  such  a  position  that  its  centre  of  gravity  is  at  a 
distance  of  2  inches  from  the  axis  of  the  mandrel.  The  centrifugal  force  is  to 
be  balanced  by  two  3  lb.  masses  placed  on  two  radii  on  opposite  sides,  and 

inclined  at  45°  to  the  diameter  passing  through  the  centre  of  gravity  of  the 
casting.    Find  how  far  from  the  centre  the  masses  should  be  placed. 



CHAPTER  VI 

WORK,  POWER  AND  ENERGY 

Work 

We  have  now  to  introduce  some  new  physical  quantities,  and 

also  another  principle  or  law,  mentioned  in  Chapter  III,  which  is 

very  far  reaching  in  its  applications  and  of  particular  importance 

to  engineers. 

Fig.  87. 

If  a  force  acting  on  a  body  causes  a  displacement  of  it  then  the 

force  is  said  to  do  work.  Also,  if  a  body  is  moved  in  the  opposite 

direction  to  a  force  acting  on  it,  work  is  said  to  be  done  against 
the  force. 

We  see  that  there  are  two  things  necessary  before  work  can  be 

done,  viz.  force  and  motion. 

The  quantity  of  work  done  is  measured  hy  the  product  of  the 

component  of  the  force  in  the  direction  of  the  displacement^  and  the 

displacement. 

For  example,  in  the  case  shewn  in  fig.  87,  if  the  force  P  moves 
the  mass  a  distance  s  then. 

The  work  done  =  P  cos  6  .  s =  F.s, 

where  F  is  the  component  of  the  force  in  the  direction  of  motion. 
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The  absolute  unit  of  work  in  the  f.p.s.  system  is  the/oot-poundal. 

One  foot-poundal  is  the  work  done  by  1  poundal  of  force  acting 
through  a  distance  of  1  foot. 

In  the  c.G.s.  system  the  absolute  unit  is  the  erg. 

One  erg  is  the  work  done  by  1  dyne  of  force  acting  through  a 
distance  of  1  centimetre. 

1  joule  =r  10''  ergs. 
Frequently  the  gravitation  unit  is  used,  and  we  speak  of  the 

number  of  foot-lbs.  of  work  done. 

One  ft. -lb.  is  the  work  done  by  a  force  equal  to  the  weight  of  1  lb. 
acting  through  a  distance  of  1  foot. 

In  the  simple  case  shewn  in  tig.  87  we  considered  the  force 
constant,  but  in  many  cases  the 
force  varies  as  the  displacement 

increases.  In  such  cases  we  may 

conveniently  draw  a  Force-Space 
curve  such  as  is  shewn  in  fig.  88. 

The  work  done  for  a  small  dis- 

placement 8s  will  be  represented 
by  AB  .  Ss,  i.e.  the  cross  shaded 
area,  and  the  total  work  done  is 

represented  by  the  area  under  the 

force-space  curve,  shewn  shaded 
vertically. 

Or,  we  may  find  the  space-average  of  the  force  (F)  from  the 
graph,  or  otherwise,  and  the  work  done  will  then  be  equal  to  F .  s, 
where  s  is  the  total  displacement. 

Note.  This  space-average  of  the  force  must  not  be  confused 

with  the  time-average  of  the  force  which  we  used  in  applying  the 
principle  of  momentum.  In  very  few  cases  will  the  two  averages 
have  the  same  value. 

Example  (1).     The  weight  of  the  centre  span  of  the  Quebec  bridge 
is  5400  tons.     This  span  was  raised  into  position  through  a  vertical 

li.  E.  D.  9 

Space Fig.  88. 
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height  o/*  150  feet  hy  means  of  hydraulic  jacks.    Find  the  useful 
work  done  in  foot-tons. 

During  lifting  the  vertical  force  downwards  was  constant  and 
=  5400  X  2240  lbs.  wt. 

The  distance  through  which  this  force  was  overcome 
-  150  feet. 

.-.   The  work  done  =  5400  x  2240  x  150  ft. -lbs. 
-  8-1  X  10^  ft.-tons. 

Power 

Power  is  a  name  given  to  the  time-rate  of  doing  work,  or  is  the 

amount  of  work  done  -per  unit  time. 

Absolute  System  of  Units. 

F.p.s.  system.    The  unit  of  power  is  1  foot-poundal  per  second. 

c.G.s.  system.    The  unit  of  power  is  1  erg  per  second. 

1  watt  is  1  joule  per  second,  i.e.  10''  ergs  per  second. 
Practical  Unit.  The  British  unit,  most  frequently  employed 

for  measuring  power,  is  the  horse-power  originally  introduced 
by  Watt. 

1  horse-poiver  (h.p.)  is  a  rate  oj 

working  equal  to  550  ft.-lhs.  of 

work  per  second,  or  33,000  ft.-lbs. 
of  work  per  minute. 

It  may  be  noted  that  power 

multiplied  by  time  gives  us  work 
done,  or 

W  -  H  .  ̂, 

where  W  =  the  work  done,  H  -  the 

power,  and  t  =  the  time. 

In  dealing  with  heat  engines  we 

01 I   Ti 
me 

Fig.  89. 

frequently  use  this  as  a  basis  for  a  large  unit  of  work  called  the 
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horse-power-hour.    This  is  the  work  done  by  an  agent,  working 
at  1  horse-power,  in  one  hour. 

i.e.  1  horse-power- hour  =  33,000  x  60  ft. -lbs. 

If  the  power  is  varying  we  may  find  the  work  done  by  drawing 

a  power-time  curve,  fig.  89. 

The  work  done  in  time  t  is  obviously  represented  by  the  shaded 
area  under  the  curve. 

Example  (2).  An  electric  crane  raises  a  load  o/S  tons  through 
a  vertical  distance  of  20  feet,  in  12  seconds,  at  a  uniform  speed.  If 

23  per  cent,  of  the  power  supplied  is  wasted  in  friction,  what  is 

the  horse-power  which  has  to  be  supplied  to  the  motor  ? 

The  work  done  in  12  seconds  =  3  x  2240  x  20  ft.-lbs. 

rw.,            ,    n                         ,           3  X  2240  x  20  ̂ ,   „ 
The  work  done  per  second       =   yY)   rt.-lbs. 

.*.  The  horse-power  used  in  raising  the  load 
3  X  2240  X  20 

12  X  550 

=  20-4  H.p. 

Let  H  =:  the  horse-power  supplied  to  the  motor. 

H  =  20-4  +  ,?^H, 

20-4 

"  =  077 

=  26-5  H.p. 

Energy 

The  energy  of  a  body  is  its  capacity  to  do  work. 

'It  is  measured  by  the  amount  of  work  which  can  be  done,  and 
therefore  has  the  same  units  as  work.  So  long  as  we  deal  with 

the  energy  of  a  body,  or  system  of  bodies,  and  not  with  energy 

9—2 



132  ELEMENTARY  DYNAMICS 

in  the  abstract,  for  mechanical  problems  we  may  divide  energy 
into  two  classes : 

(1)  Potential  Energy. 

(2)  Kinetic  Energy. 

The  Potential  Energy  of  a  body  is  the  energy  a  body  possesses 
in  virtue  of  its  position. 

The  commonest  case  is  the  energy  due  to  a  body's  position 
relative  to  the  earth. 

Suppose  we  have  a  mass  of  M  lbs.  raised  a  distance  h  feet  above 

the  ground,  then  if  we  allow  the  body  to  fall  the  force  of  gravity, 
M^  absolute  units,  will  act  through  the  distance  A,  and  the  work 

it  does  will  be  equal  to  Mgh  absolute  units. 

Mgh  is  a  measure  of  the  potential  energy,  in  absolute  units,  of  a 
mass  M  raised  a  height  h. 

Another  example  of  potential  energy  is  afforded  by  a  mass  of 
iron  which  is  in  the  neighbourhood  of  a  fixed  magnet.  If  there 

is  no  resisting  force  such  as  friction,  the  mass  of  iron,  if  freed, 

will  be  moved  to  the  magnet.  Therefore,  when  separated  from  the 

magnet,  it  possesses  Potential  Energy  due  to  its  position.  Again, 

a  helical  spring  or  elastic  body  which  is  stretched,  has  potential 

energy  stored  up  in  it,  and  this  can  be  got  out  when  the  spring  or 
body  is  allowed  to  return  to  its  normal  length. 

The  Kinetic  Energy  of  a  body  is  the  energy  it  possesses  in 
virtue  of  its  m,otion. 

That  there  is  energy  possessed  by  a  body  in  motion  is  easily 
seen  when  we  realise  that,  in  order  to  stop  a  body  which  is  moving, 

we  shall  have  to  exert  a  force,  and  work  will  be  done  against  this 

force  while  the  body  is  being  brought  to  rest. 

We  must  find  an  expression  to  represent  the  quantity  of  kinetic 

energy  possessed  by  a  mass  M  say,  moving  with  a  speed  v. 

Suppose  we  apply  a  constant  force  F,  in  a  direction  opposite  to 
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that   of  the  motion,  and   that   this  force  stops  the  body  in  a 
distance  s. 

The  kinetic  energy  of  the  body 

=  the  work  done  against  the  force 
=  F .  s. 

Now  this  constant  force  will  produce  a  uniform  rate  of  change 
1) 

of  speed  given  by  - ,  where  t  is  the  time  taken  to  come  to  rest. t 

.'.  We  have  F  =  — -  . t 
V 

Also,  the  time-average  of  the  speed  will  be  ̂  , 
V 

The  kinetic  energy  =  F  .  s 
Mv      V 

=  1  Mv\ 

This  is  the  expression  required  for  the  kinetic  energy. 

The  kinetic  energy  in  absolute  units  is  equal  to  one-half  the  pro- 
duct of  the  mass  and  the  square  of  the  speed. 

Suppose  now  the  force  is  not  constant.  Let  it  be  F  when  the 

velocity  is  u,  and  suppose  that  it  produces  a  small  decrease  of 
velocity  8w,  and  that  the  distance  moved  is  85.    Then 

F .  8s  =  the  change  of  kinetic  energy  for  the  distance  8.9 

^     8(lMt)2) or  F  =  -~    . 
hs 

This  is  only  true  when  8s  is  made  indefinitely  small,  as  F  may 

vary  over  the  distance  8s.  When  8s  is  made  indefinitely  small 
we  get 

_d{^Uv^) 
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or,  the  force  for  any  position  of  the  body  is  equal  to  the  rate  of 
change  of  the  kinetic  energy  with  respect  to  the  distance. 

If  F  is  the  space-average  of  the  force,  and  s  is  the  total  distance, 

F.s  =  the  total  change  of  kinetic  energy. 

Gravitation  Units. 

Mv^ 

The  kinet
ic  

energ
y  

=  J —  ,  where
  

g  is  the  numer
ical 

 
value

  
of 

the  acceleration  due  to  gravity. 

If  we  use  this  unit,  it  is  clear  that  in  equating  the  work  done 

to  the  kinetic  energy  the  force  must  be  measured  in  Gravitation 
Units. 

Elxample  (3).    A  motor-car  weighing  18  cwt.  and  travelling  at 
10  rniles  per  hour  is  brought  to  rest  in  20  feet  by  the  application  of 

its  brake.    Find  the  space-average  of  its  retarding  force. 

The  kinetic  energy  of  the  car 

=  ̂ mv^  abs.  units 
=  1  X  18  X  112  X  (If  X  lOy  ft.-pdls. 
-2-17  X  10^  ft.-pdls. 

Let  F  be  the  space-average  of  the  retarding  force  in  abs.  units. 

The  work  done  against  this  force  F  by  the  car  is  equal  to  F.s, 

i.e.  F  X  20  ft.-pdls. 
.-.  Fx  20  =  2-17  X  10^ 

2-17  X  10«    J, 

F=-^^— pdls. 

~    20x32    ̂ ^'• =  3^0  lbs. 

Comparison  between  Momentum  and  Kinetic  Energy 

If  a  constant  force  F  acts  on  a  body  of  mass  M  and  produces  a 

change  of  velocity  from  u  to  v,  in  a  distance  s,  and  a  time  t, 
then, 

F  X  ̂   =  the  change  of  momentum  =  (^Mv—  Mu), 

F  X  s  =  the  change  of  kinetic  energy  =  (|  Mv^  —  ̂   Mu^). 
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If  the  force  is  varying,  for  estimating  the  change  of  momentum 

we  must  use  the  time-average  of  the  force.  * 

For  estimating  the  change  of  kinetic  energy  we  must  use  the 

space-average  of  the  force. 

Example  (4).  In  the  problem  on  p.  69  we  had  the  accelerating 

force-time  curve  for  the  first  11*1  seconds  after  the  starting  of  a 
train. 

Find  the  time-average  and  the  space-average  of  the  force. 

The  force  increased  uniformly  with  the  time  and  at  the  end  of 

11-1  seconds  was  3 -96  tons  wt. 
3'96 

.*.  The  time-average  of  the  force  =  —^ 
=  1-98  tons  wt. 

To  find  the  space-average  of  the  force  we  want  to  know  the 
distance  moved.    This  we  can  obtain  from  the  velocity-time  curve 
shewn  on  p.  70.    The  area  under  the  curve  gives  the  distance.    By 
counting  squares  we  find  there  are  128. 

.-.  The  distance  =  128  x  O'l  x  0-5  =  6-4  feet. 

The  velocity  at  the  end  of  the  time  =  1-72  feet  per  second. 

Equating  the  work  done  to  the  kinetic  energy  generated,  we 
have 

F .  s  =  i  Mt;^,  where  F  is  the  space-average  of  the  force. 

F  X  6-4  =  1x400  X  1-722. 

400  X  1-722 

2  x6-4 

400  X  1-72- tons  wt. 
2x6-4x32 

=  2-89  tons  wt. 
We  thus  have, 

Time-average  of  the  force  =  1-98  tons  wt. 

Space-average  of  the  force  =  2-89  tons  wt. 
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It  should  be  noted  that  energy  is  a  scalar  quantity  and  not 

a  vector  quantity.  The  force  in  the  case  of  potential  energy 
and  the  velocity  in  the  case  of  kinetic  energy  will  have  definite 

directions,  but  this  does  not  affect  the  energies.  We  have  already 

defined  the  energy  of  a  body  merely  as  its  capacity  for  doing  work. 
By  suitable  means  we  can  arrange  for  the  direction  of  the  work 

done  by  a  given  quantity  of  energy  to  be  what  we  wish.  For 

example  in  the  case  shewn  in  fig.  90,  we  may  use  the  potential 

energy  of  the  mass  m  in  doing  work  against  a  resistance  F  acting 
on  M. 

hzs 
M 

y/////////////?//////// 

Fig.  90. 

Or  again,  take  the  case  of  a  motor-car  going  round  a  corner  at 
a  constant  speed.  In  order  to  change  the  momentum  we  know  we 

must  have  a  force  acting  towards  the  centre  of  rotation  for  a  given 

time,  but  this  force  does  no  work  since  it  always  acts  at  right 
angles  to  the  motion,  and  the  kinetic  energy  remains  constant 

although  the  direction  is  changing. 

In  dealing  then  with  energy,  in  order  to  ohtaiii  the  total  we  add 

the  quantities  algebraically  and  not  vectoHally. 

Conservation  of  Energy 

So  far  we  have  only  been  dealing  with  two  forms  of  energy, 

potential  and  kinetic,  but,  apart  from  these  mechanical  forms,  there 
are,  in  nature,  several  forms  of  energy,  heat,  light,  electrical, 
chemical  and  so  on. 

Now  the  various  forms  of  energy  can  be  converted  one  into 
another.     When  a  piece  of  iron  is  hammered  on   an   anvil   the 
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potential  energy  of  the  hammer  is  first  changed  into  kinetic  energy. 

This  is  changed  into  heat  when  th^  hammer  strikes  the  iron.  In 

the  case  of  a  steam  engine  driving  an  electrical  generator  we  have 
a  case  of  heat  energy  of  the  steam  being  used  to  produce  electrical 

energy.  The  heat  of  the  steam  is  produced  from  chemical  energy 
in  the  coal. 

In  all  these  conversions  of  energy  from  one  form  to  another 

which  are  either  arranged  by  man,  or  occur  in  nature,  we  assume 

that  there  is  no  net  loss  or  gain  of  energy.  When  a  definite 

quantity  of  one  form  of  energy,  A  say,  is  used  up  in  producing 

another  form  of  energy,  B  say,  the  quantity  of  B  produced  is 
exactly  equal  to  the  quantity  of  A  which  has  disappeared.  To  put 

it  in  another  way,  man  finds  he  cannot  create  or  destroy  energy 
and  he  believes  that  the  Deity  does  not  do  so. 

The  whole  of  physical  science  rests  on  this  principle  of  the  con- 
servation of  energy.  Whenever  physical  phenomena  have  been 

discovered,  which  appeared  at  first  to  violate  this  principle,  further 
experiments  have  always  shewn,  either  an  error  of  observation, 

or  that  a  form  of  energy  has  been  discovered  which,  up  to  that 

time,  was  unknown  to  man.  It  seems  most  probable  that  there 
are  still  forms  of  energy  which  exist  unknown  to  man,  or  which 

man  cannot  make  use  of  by  converting  them  to  other  forms. 

Now  in  mechanical  problems  we  shall  always  be  dealing  with 

a  definite  body,  or  system  of  bodies,  and  generally  we  need  only 

concern  ourselves  with  the  mechanical  forms  of  energy. 

In  such  cases  the  body  or  system  of  bodies  may  have  the  total 

energy  altered  by  work  being  done  on  or  by  the  body  or  system. 

We  may  express  this  as  follows  : 

Whenever  a  body  or  system  of  bodies  has  its  energy  changed  the 
increase  of  energy  is  exactly  equal  to  the  net  work  done  on  the 
system  by  the  external  forces.    Or, 

Work  put  in  -  work  got  out  =  Gain  of  energy. 
If  the  left-hand  side  is  negative  the  gain  of  energy  will  be 

negative,  i.e.  there  will  be  a  loss  of  energy  in  the  body  or  system. 
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Example  (5).  A  shell  weighing  2,60  lbs. ,  which  did  not  explode, 

was  found  to  have  penetrated  the  ground  in  a  certain  place  a  dis- 
tance of  ̂  feet  in  the  direction  of  impact.  The  striking  velocity  was 

820  feet  per  second.  What  was  the  space-average  resistance  to 
penetration  of  the  ground?    Neglect  the  energy  due  to  rotation. 

If  the  velocity  of  the  shell  had  been  1000  feet  per  second  at  striking, 
how  far  would  it  have  penetrated  ? 

Let  R  —  the  average  resistance  to  penetration  in  lbs.  wt. 

We  may  neglect  the  change  of  potential  energy  of  the  shell  and 
may  say, 

The  work  done  against  the  resistance  of  the  ground  =  the  loss 
of  kinetic  energy  of  the  shell,  i.e. 

Rx^x8  =  ix260x  820^ 

.    „     260x820%, 
2  X  32  X  8 

=  342,000  lbs.  wt. 

=  153  tons  wt. 

Let  37  =  the  distance  of  penetration  for  a  striking  velocity  of 
1000  feet  per  second. 

Then,  since  R  is  constant, 

X     10002 

8       8202  ' .-.  ̂ =11-9  feet. 

Example  (6).  A  spring  is  such  that  it  extends  J  inch  for  a  pull 
of  1  lb.  wt.  A  mass  of  4  lbs.  is  suspended  by  the  spring,  being 

fixed  to  the  end,  and  is  pulled  down  until  the  spring  is  extended  a 

total  distance  of  5  inches.  If  the  mass  is  suddenly  let  go,  how 
high  will  it  rise  and  what  will  be  its  maximum  velocity  ? 

The  mass  of  the  spring  may  be  neglected. 

The  energy  stored  in  the  spring,  when  stretched,  is  equal  to 
the  work  done  in  stretching  it. 
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////////////// 

The  pull-extension  curve  will  be  a  straight  line  as  shewn  in 
fig.  91. 

For  5  inches  extension  the  pull  of 

the  spring  =10  lbs.  wt. 

The  energy  in  the  spring  initially 
=  area  OAB 

Let  h  =  the  maximum  height  in 
inches  which  the  mass  rises. 

When  the  mass  is  at  its  maximum 

height,  the  spring  is  extended  (5  -  A) 
inches. 

The  pull  of  the  spring  in  this  posi- 
tion 

=  2  (5 -A)  lbs.  wt. 

The  energy  stored  in  the  spring  in 
this  position 

1 
1 

Extension        B 

Fig.  91. 

2  (5 -Ay 
2  X  12 

ft.-lbs. 

4A 
The  gain  of  potential  energy  of  the  mass  =  ̂   ft.-lbs. 1  z 

The  gain  of  potential  energy  of  the  mass  =*the  loss  of  strain 
energy  of  the  spring. 

4A_10x5      2(5-A)2 
*•  12  ~2Vl2~    2712    ' 

or  h^-eh=0, 
i.e.  h  =  0,  or  A  =  6  inches. 

It  is  obvious  that  the  spring  will  be  in  compression. 

To  find  the  maximum  velocity  of  the  mass.  The  velocity  will 
continue  to  increase  so  long  as  the  pull  of  the  spring  is  greater 

than  the  weight  of  the  mass,  i.e.  until  the  spring's  extension  is 
reduced  to  2  inches.     We  have  then. 
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The  gain  of  potential-  and  kinetic  energy  of  the  mass  =  the  loss 
of  strain  energy  in  the  spring, 

or,  using  absolute  units, 

4x3x32      1/10x5      ^x2=x 

2'*"  -V2~>n2~2TT2J"'-'' 12  2 

i.e.  32  +  2!)2  =  If  X  32, 

/ 
18o<  32 

Ux'2  ' or  -y  =^  3'46  feet  per  second. 

Example  (7).  A  railway  siding  is  level  for  the  first  50  yards, 

and  then  rises  at  a  slope  of  ~~.  A  wagon  weighing  10  tons  is 

shunted  on  to  the  siding  with  a  velocity  o/*  1 8  Tniles  per  hour,  and 
is  observed  to  reach  the  foot  of  the  incline  in  6  seconds.  If  the 

resisting  force  due  to  friction  is  constant,  what  is  its  magnitude  ? 

How  far  up  the  incline  will  the  wagon  travel  before  coming  to  rest  ? 

Let  V  —  the  velocity  at  the  foot  of  the  incline  in  feet  per  second. 

The  average  velocity  for  the  first  6  seconds 
.       18  X  88 

60 
+  v 

2 

.    26-4  +  2; 
.  .    ^ —  X  b  =  150, 

i.e.  v  =  50 -26-4 

=  23"6  feet  per  second. 
Let  F  —  the  force  due  to  friction  in  abs.  units. 

By  the  2nd  law  of  momentum  we  have, 

m  (v,  -  V,) 
t 

10  X  (26-4 -23-6) 
6 

10x2-8^ tons  wt. 

abs.  units 

6  X  32 

=  0*146  tons  wt. 
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The  total  retarding  force  up  the  incline 

=  0-146  +  ̂ V  X  10  (approx.) 
=  0-396  tons  wt. 

Again,  by  the  2nd  law  of  momentum  for  the  incline, 

0-396  X  32  =  10  X  *^ — , t 

where  t  is  the  time  taken  to  come  to  rest,  i.e. 

10  X  23-6 seconds. 0-396  X  32 

The  average  velocity  =  -^—  feet  per  second. 
03. g  236 

.*.  The  distance  up  the  incline  =  ̂^-^7—  x  — - — ^-^77,-7^ *  2         32  X  0-39o 
=  220  feet. 

Or,  we  may  use  the  energy  principle. 

The  work  done  against  friction  =  the  loss  of  energy. 

For  the  first  part  of  motion, 

Fx  150  =  1  X  10(26-42-23-62), 
5(26-42-23-62)    ^ 

•*•  F  =    ̂    n^Tv   abs.  units 150 

5  X  50  X  2-8 

"-^32^150     ̂ ^"^"^- 
=  0-146  tons  wt. 

For  the  motion  up  the  incline,  let  s  =  the  distance  in  feet. 

10  X  s 
The  gain  of  potential  energ}^  =  —rfr-  (nearly) 

=  —  foot-tons. 
4 

.-.  0-146  x^xs  =  |- lOx  23-62- ^x^, 

5  X  23-62 
0-396  X  32 

=  220  feet. 



142  ELEMENTARY  DYNAMICS 

Example  (8).  200  gallo^is  of  water  are  to  he  pumped  per 

miriute  through  a  3-inch  pipe  up  a  height  of  40  feet.  The  useful 

horse-power  of  the  pump  is  42  per  cent,  of  the  horse-power  supplied^ 
and  the  estimated  loss  due  to  friction  in  the  pipe  is  equivalent  to 

an  additional  height  o/  16  feet.  What  horse-power  will  have  to  be 
supplied  to  the  pump  ? 

1  cubic  foot  contains  6^  gallons. 

1  gallon  of  water  weighs  10  lbs. 

Let  V  =  the  velocity  of  delivery  in  feet  per  second,  and  d  =  the 
diameter  of  the  pipe  in  feet. 

^,  Trd'  200         1 
Then,  ^x^  =  —  x^, 

_  200  X  4  X  16 
^•®'  

""  ~  60  X  6-25  X  TT 

=  10 '85  feet  per  second. 

The  mass  of  water  delivered  per  second  ==  -J^-  lbs. 
-33-3  lbs. 

The  potential  energy  supplied  per  second  =  33*3  x  40  ft.-lbs. 

The  work  done  against  friction  per  second  =  33*3  x  16  ft.-lbs. 

The  kinetic  energy  supplied  per  second 

1  X  33-3  X  10-852 

^2   ^32   ^'-^^'- 

The  total  energy  supplied  per  second 

r  10-8521 
-  33-3  J40  +  16  +^^^^1  ft.-lbs. 

=  33-3  {40 +  16 +  1-84} 
-  1930  ft.-lbs. 

The  horse-power  given  to  th&  water  =  -V\V"- 

.'.  The  horse-power  to  be  supplied  to  the  pump  =  -^fjj-  x  -W~ 
=  8-35. 
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In  applying  the  principle  of  conservation  of  energy  to  mecha- 
nical problems,  we  must  be  careful  to  see  that  we  are  not  getting 

energy  developed  which  we  are  neglecting.  For  example,  take 

the  case  of  an  impact  between  two  bodies  where  we  are  getting 
a  sudden  change  of  momentum.  Most  frequently  in  such  cases 

we  shall  get  energy  dissipated  in  the  form  of  heat.  Work  may 

actually  be  done  in  damaging  the  bodies  which  impinge,  or 

vibrations  may  be  set  up  by  the  impact,  the  energy  of  which  is 

ultimately  changed  to  heat.  In  such  cases  we  cannot  apply  the 

principle  stated  above,  but  we  can  still  apply  the  principle  of  con- 
servation of  momentum. 

Consider  the  example  of  two  trucks  on  p.  79.  ' 
Before  impact  the  total  kinetic  energy 

=  (i  X  12  X  36  +  i  X  10  X  4)  g()|^  ft.-tons 
=  15-85  ft.-tons. 

After  impact  the  total  kinetic  energy 

=  ̂ x22x4-172x 

I 

60^  X  32 

=  12-9  ft.-tons. 

.'.  The  energy  lost  during  impact  =^(15-85  —  12*9) 
=  2-95  ft.-tons. 

Example  (9).  In  a  ballistic  pendulum,  for  estimating  the 
velocity  of  rifle  bullets,  a  block  of  wood  weighing  10  lbs.  was  sus- 

pended by  two  parallel  strings  as  shewn  in  fig.  92.  When  a  bullet 

weighi7ig  0*4  oz.  was  fired  into  the  block  in  a  horizontal  direction, 
passing  through  the  centre  of  gravity  of  the  block,  it  was  observed 

that  the  block  rose  6*95  inches.    Find  the  velocity  of  the  bullet. 

In  this  case  we  shall  get  a  considerable  quantity  of  heat 

developed.  We  may  assume  that  the  block  does  not  appreciably 
move  until  the  bullet  has  penetrated  its  greatest  distance. 

Let  V  =  the  initial  velocity  of  the  bullet  in  feet  per  second,  and 
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V  =  the  velocity  with  which  the  block  begins  to  move  in  feet  per 
second. 

The  total  momentum  of  the  bullet  and  the  block  in  a  horizontal 

direction  must  remain  constant,  since  there  is  no  resultant  force 
in  that  direction. 

i.e. 

or 

0-4        /  _     0-4\   , 

v=:  10-025  X  40v, 

V-401V    
.(1). 

///////////////////////// 

Fig.  92. 

The  block  and  the  bullet  now  swing  forward,  and  all  their 

kinetic  energy  is  changed  to  potential  energy  when  they  reach 
their  highest  point. 

.'.  1  (10-025)  V2=  10-025  X  32  x  ̂^^     (2), 

,     64  X  6-95 
i.e.  V^  =  ___^-_, 

or  V  =  6*06  feet  per  second. 

.*.  from  (1),  ' 

The  velocity  of  the  bullet  =  401  x  6-06 

=  2430  feet  per  second. 
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The  fraction  of  the  initial  energy  dissipated  in  heat 

^  (9^\  X  2430^  - 1  (10-025)  X  6-062 

=  1 
10025  X  40  X  6-06» 

2430^ 
=  0-9975. 

Example  (10).  Loads  M,  m,  and  P  are  suspended  by  a  string 
which  passes  over  a  light  frictionless 

pulley  as  shewn  in  fig.  93.  A  ring  fixed 

at  A  is  large  enough  for  in  to  pass  through 

but  stops  P.  The  string  connected  to  m 

passes  through  a  hole  in  P.  M  is  greater 
than  m  and  less  than  P  +  m.  Shew  that^ 

if  the  masses  start  from  rest  in  the 

position  shewn  in  the  figure,  after  the 
Tnass  m  has  passed  twice  through  the 

ring  the  system  will,  for  the  instant, 
come  to  rest  again  with  P  at  a  height 

TETX 

L 

/    M+m    V     ̂   ,       . 
I        above  the  ring. 
\P  +  m+Mj  ^ 

Fig.  93. 

Let  h'  be  the  required  height  above 
the  ring  when  the  system  is  again  at  rest. 

The  total  energy  lost  is  all  potential 
and  is  equal  to 

(P  +  m-M)g{h-h'). 
This  energy  is  lost  due  to  the  two  impacts  at  the  ring. 

On  the  first  passage  through  the  ring  the  velocity  v  is  given  by 

<,(P  +  m-M)A  =  (^±^)«^   (1). 
When  P  strikes  the  ring  the  energy  lost 

^Pv\ 
L.  E.  D. 

.(2). 
10 
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On  the  return  journey,  just  before  m  strikes  P,  the  velocity  of 

m  will  again  be  v,  since  there  is  no  loss  of  energy. 

Let  T  =  the  impulse  in  the  string  when  P  is  jerked  into  motion, 

and  let  u  =  the  velocity  after  the  jerk. 
Then  for  P  and  m, 

T  =  (P  +  m)u  —  7nv, 

and  for  M,         T  =  M^;  —  Mu. 

Eliminating  T,  we  get, 
/    M+m    \ 

u=   V   (3). 

The  energy  lost 

=  i(M +7)i)v^-l(M  +  m+P}u"      (4). 
The  total  energy  lost  from  (2)  and  (4) 

--i(P  +  m+  M)(v^-u'') 

=  (P +m-M)g{h-h'). 
Since  the  masses  came  to  rest  at  a  height  h', 

(P  +  ?n  -  M)  gli  =  (P  +  m  +  M)  —  . 

From  equations  (3)  and  (1), 

(M  +  mf  v^ 

gh  - 

2(P  +  m  +  M)(P  +  m-  M)' M+m 

\P  +  M  +  mj 

Energy  and  Momentum  Principles 

It  should  be  noted  that  since  in  defining  work  and  mechanical 

energy  we  have  introduced  no  new  physical  facts,  but  merely 

definitions  in  terms  of  physical  quantities  already  measurable,  we 
cannot  really  obtain  any  new  results  by  the  application  of  the 

principle  of  the  conservation  of  energy  in  the  restricted  form  given 
above.  The  same  results  can  always  be  obtained  by  the  principle 

of  momentum,  but  frequently  the  labour  may  be  very  considerably 
reduced  by  using  the  principle  of  energy. 
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This  of  course  does  not  apply  to  the  general  principle  of  con- 
servation of  energy  where  all  forms  of  energy  are  taken  into  account. 

We  will  emphasize  the  two  principles  as  applied  to  translation 
by  restating  them. 

(1)  "/?!  any  system,  the  total  momentum  remains  constant  unless 

the  system  is  acted  upon  by  external  forces  " 
If  external  forces  are  acting,  then  the  resultant  change  of 

momentum  is  equal  to  the  resultant  external  force  multiplied  by 
the  time  during  which  it  acts. 

(2)  "/rz.  any  sy stein  the  total' energy  remains  constant  unless  the 
system  is  acted  upon  hy  external  forces  " 

If  external  forces  are  acting,  then  the  total  change  of  energy 
is  equal  to  the  resultant  external  force  multiplied  by  the  distance 

moved  by  the  point  of  application  in  the  direction  of  the  force. 

Kinetic  Energy  due  to  rotation  about  a  fixed  axis 

Bearing  in  mind  that  kinetic  energy  is  a  scalar  quantity,  it  is 
easy  to  estimate  the  kinetic  energy 
of  a  body  due  to  rotation. 

Suppose  a  body  is  rotating  about 

a  fixed  axis  O  with  an  angular  velo- 
city o>  radians  per  second.  Consider 

a  small  particle  of  mass  m  at  a  dis- 
tance r  from  the  axis.  This  has  a 

speed   inr,    and    its   kinetic    energy 

Fig.  94. 

=  -2--       t--- 
.'.  For  the  whole  body  the  kinetic 

energy  =  ̂ S^^mw^r^,   the    summation 
being  effected  for  all  the  particles  of  the  body, 

i.e.  The  kinetic  energy  =  ̂  co^  !Smr^ 

where  I  equals  the  moment  of  inertia  of  the  body  about  the  axis 

through- O. 

10—2 
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Fig.  95. 

Work  done  by  a  couple  or  torque 

Let  a  body,  pivoted  about  a  fixed  axis,  be  subjected  to  a  turning 
moment  or  torque  T.  Consider  a  particle 

at  A,  distant  r  from  the  axis,  and  let  f 

be  the  force  acting  on  the  particle  in  a 

direction  perpendicular  to  AO.  The  com- 
ponent of  force  acting  on  A  in  the 

direction  AO  will  do  no  work,  since  there 

is  no  motion  towards  or  away  from  O. 

If  the  body  rotate  through  a  small  angle 

8^,  the  work  done  on  the  particle  ~f.  rSO. 

For  the  whole  body  we  shall  have, 

The  work  done  =  2/r8^ 

=  8^  X  y^r, 
since  S6  is  the  same  for  all  the  particles. 

Now  2/r  =  the  algebraic  sum  of  the  moments  of  all  the  forces, 
external  and  internal,  about  the  axis  through  O.  The  internal 

forces  mutually  balance. 

.-.  1fr  =  the  algebraic  sum  of  the  moments  of  all  the  external 
forces  about  the  axis  through  O,  i.e. 

2/r  =  the  torque. 

.*.  The  work  done=^  tSO. 

Constant  Torque. 

If  the  torque  is  constant  then  the  work  done  for  an  angle  of 
rotation  6  =  TO, 

Varying  Torque. 

If  the  torque  be  a  varying  one,  the  work  done  may  be  obtained 
from  the  curve  connecting  the  torque  and  angle  turned  through. 

The  work  done  =  2x8^ 

=  The  area  under  the  torque-angle  curve. 
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Energy  principle  applied  to  rotation 

The  energy  principle  applied  to  rotation  may  be  stated  thus, 

Ths  work  done  by  the  resultant  torque  =  the  gain  of  rotational 
kinetic  energy. 

Example  (11)-  A  clock  spring  is  such  that  the  turning  moment 

required  to  wind  it  up  varies  as  the  a^igle  of  wind.  The  turning 

moment  exerted  at  the  end  of  the  first  revolution  equals  3  inch-lbs. 
Find  the  work  done  in  making  the  third  revolution. 

The  torque-angle  curve  will  be  a  straight  line  as  shewn  in  fig.  96. 

Let  OC  =  47r  radians,  and  OD  =  67r 
radians. 

The  work  done  during  the  third 
revolution 

area  ABDC 

/AC+BD\ 
xCD. 

AC  =  6  inch-lbs.    BD  =  9  inch-lbs. 

.-.  The  work  done 

0                    c 

Fig.  96. 

6  +  9      _ 

"     2     "" 
=  IStt  inch-lbs. 

=  3-93  foot-lbs. 

angle 

Example  (12).  In  a  De  Laval  Steam  Turbine  giving  5  horse- 
power the  rotor  runs  at  30,000  revolutions  per  minute.  The  vanes, 

on  which  the  steam,  acts,  are  at  a  mean  distance  from  the  axis  of 

31  inches.  Neglecting  frictional  losses,  find  the  tangential  force 
exerted  by  the  steam  on  the  rotor. 



150  ELEMENTARY  DYNAMICS 

Let  P  =  the  force  in  lbs.  weight  acting  tangentially  on  the  rotor. 

P  X  3*5 The  torque  on  the  rotor  =  — — —  lbs.  ft. 

The  angle  turned  through  per  minute 

=  30,000  X  27r  radians. 

The  work  done  per  minute  by  the  steam 

Px  3-5  X  30,000  x27r 
12 

Horse-power  x  33,000. 

ft.-lbs. 

.-.  P  X  3-5  X  5000  X  TT  =  5  X  33,000, 

r,  33 
or  P  =   3'5  X  TT 

=  3  lbs.  wt. 

Example  (13).  A  uniform  trap-door,  2  feet  hy  2  feet,  and 

weighing  "20  Ihs.,  falls  from  the  vertical  position  and  strikes  the 
floor  only  along  the  edge  opposite  the  hinges.  Find  the  angular 

velocity  of  the  door  just  before  it  strikes  the  Jioor,  and  the  magnitude 
of  the  blow  on  the  edge. 

(1)  To  find  the  angular  velocity  we  may  equate  the  loss  of 
potential  energy  and  the  gain  of  kinetic  energy. 

Since  the  centre  of  gravity  falls  1  foot,  the  loss  of  potential 
energy 

=  20  X  ̂   ft.-pdls. 

The  moment  of  inertia  about  an  axis  through  the  hinges 

=  20{^+l} 

=  -^lbs.  ft." 
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The  gain  of  kinetic  energy  ==  J  x  »/  x  w^  where  o>  is  the  angular 
velocity  just  before  striking  the  floor. 

.-.  */-o)2z=  20x32, 

or,  CO  =  \/48 

=  69  radians  per  second. 

(2)    To  find  the  impulse  on  the  edge,  we  have,  the  impulsive 
torque  equals  the  change  of  angular  momentum. 

Let  P  =  the  impulse  in  absolute  units. 

Then  P  X  2  =  the  impulsive  torque. 

or. 
P  X  2  =  8/  ̂  6-9^ 

P  =1  92  abs.  units. 

Example  (14).  The  turning  moment  on  the  crank  shaft  of  an 

engine  for  different  positions  of  the  crank  is  given  in  the  figui'e 
below.  The  scales  are  such  that  1  inch  =  150  Ihs.  ft.  of  turning 

moment,  and  1  inch  =  135  degrees  of  angle  turned  through  by  the 

crank.  The  mean  speed  of  the  engine  is  150  revolutions  per 

minute,  and  the  moment  of  inertia  of  the  flywheel  is  944  Ibs.ft.^ 
units. 

If  the  resisting  moment  is  constant,  find  apj^roximately  the  greatest 

fluctuation  of  speed. 

200  - 

100 

180" 

Crank 
 
angle 

Fig.  97. 
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The  area  under  the  curve  gives  the  work  done  per  revolution. 

This  area  =1*16  square  inches. 

.         .         150  X  135      .^  „ 
1  sq.  in.  =  — -—- —  TT  ft.-lbs. loU 

=  1127r  ft.-lbs. 

The  work  done  per  revolution  =  112  x  l*167r=  ISOtt  ft.-lbs. 

If  T  is  the  resisting  torque,  we  have 
Tx27r=1307r, 

.-.  T  =  65  lbs.  ft. 

This  torque  is  represented  in  fig.  97  by  the  line  abed. 

Now  from  a  to  h,  since  the  turning  moment  is  greater  than  the 

resisting  moment,  there  will  be  a  resultant  moment  increasing  the 

speed  of  the  engine.  The  gain  of  kinetic  energy  will  be  represented 

by  the  shaded  area  above  ab. 

Similarly  from  6  to  c  the  speed  will  be  decreasing,  and  the  loss 

of  kinetic  energy  will  be  given  by  the  shaded  area  below  be. 

From  c  to  d  the  speed  will  again  be  increasing,  the  gain  of 

kinetic  energy  being  given  by  the  shaded  area  above  cd. 

From  d  to  a  the  speed  will  be  decreasing,  the  loss  of  kinetic 

energy  being  given  by  the  shaded  area  below  da. 

The  greatest  change  of  energy  will  be  given  by  the  greatest  of 
the  four  shaded  areas.  By  trial  it  will  be  found  that  the  area  above 

ab  is  the  greatest. 

This  area  =  0*227  square  inch 
-  25-57r  ft. -lbs. 

Let  o>i  be  the  angular  velocity  at  a,  and  w.^  be  the  angular 
velocity  at  b.  If  I  is  the  moment  of  inertia  of  the  flywheel,  we 
have 

^  Io>2^  -  i  Iwj^  =  25'57r  X  g, 

!•«'  ("'^      "'^ )  ̂  — 944      (^)- 
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Now  we  do  not  exactly  know  the  mean  speed  in  terms  of  Wj 

and  (Uj  since  the  speed  is  not  changing  uniformly.  We  may,  how- 
ever, as  a  close  approximation,  near  enough  for  practical  purposes, 

assume  that  ̂ -^r — -  is  equal  to  the  mean  speed,  i.e. 

CO2  +  a>i 

2 

'Zir  X  it>U 

60       • 
equation  (1) we  get 

(a>2  -  coi)  (0)2  + 

1  °^ 

XTT   X    32 

944 

(0,2
- 

.      51 
<">)=9| 

X  TT  X  32  X  60 

4x47rx  150 i.e.  (wo  —  tuj)  =  ̂ — ; —   -— -  radians  per  second. 
^  '      944  X  47r  X  150  ^ 

Or,  if  Ni  and  Ng  are  the  extreme  limits  of  speed  in  revolutions 
per  minute, 

(a>2  —  0)1)  X  60 
(N2-N1) 

27r 

51  X  16  X  60  X  60 

944  X  47r  X  150 

=  1  '65  revolutions  per  minute. 

The  percentage  fluctuation  in  speed 

=  ̂'^^00 

=  1*1  per  cent. 

Example  (15).  Taking  the  figures  given  in  the  example  on 
p.  100,  find  the  energy  lost  in  heat  due  to  the  impact  of  the  two 
wheels. 

The  kinetic  energy  before  impact 

'27r  X  500\2 /27r  X  0UU\2 

^^         V     60    7  ̂̂-'P^^^' 
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The  kinetic  energy  after  impact 

1         47r2 
2      3600 

1         47r2 
2      3600 

.'.  The  energy  lost  in  heat 

1        47r2 

(4  X  253^  +  2  X  .3542) 

X  5-07  X  10^  ft.-pdls. 

2      3600 

^^'^x  10^x4-93 
9T64 

=-.  84-3  ft.-lbs. 

{10«- 0-507  X  lO*'}  X  ̂ ft.-lbs. 

Examples.    Chapter  VI 

1.  A  cage  weighing  3  tons  is  supported  by  a  steel  rope  which  weighs  20  lbs. 
per  yard,  and  is  being  lifted  at  a  uniform  speed.  How  much  work  is  done 
when  the  free  length  of  the  rope  is  shortened  from  1500  feet  to  300  feet  ? 

If  the  uniform  speed  is  2  feet  per  second,  at  what  rate  is  work  being  done 

in  lifting  (1)  when  the  depth  is  1500  feet,  (2)  when  it  is  300  feet  ? 

2.  How  many  foot-pounds  of  work  are  done  in  pumping  1  ton  of  water 
into  a  boiler  against  a  pressure  of  150  lbs.  per  square  inch?  If  the  pump  has 
a  solid  ram  of  2  inches  diameter,  with  a  10-inch  stroke,  how  many  strokes 
are  required  and  what  is  the  thrust  on  the  ram  ? 

1  cubic  foot  of  water  weighs  62*5  lbs. 

3.  The  values  of  the  net  pressure  on  the  piston  of  an  engine  during  one 
stroke  are  given  in  the  following  table.  The  length  of  the  stroke  is  16  inches, 
and  the  distances  are  measured  in  inches  from  one  end  of  the  stroke.  The 

pressures  are  given  in  lbs.  per  square  inch. 

Distance 0 2 4 6 8 

32 

10 

26 

12 

22 

14 

18 

16 

10 
Pressure 40 

72 
75 50 
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Draw  a  graph  connecting  the  pressure  and  the  distance  and  find  the  space- 
average  of  the  pressure. 

If  the  piston  diameter  is  14  inches,  how  much  work  is  done  during  the 
stroke  ? 

4.  What  do  you  understand  by  the  expressions  "  the  work  done  by  a  force," 
and  "the  power  supplied  by  an  agent"?  In  what  units  are  these  quantities 
usually  measured  ? 

A  truck,  weighing  8  tons,  is  being  drawn  by  a  horse  along  a  siding  on  a  down 
grade  of  1  in  400,  the  horse  exerting  a  constant  horizontal  pull  of  120  lbs.  on 
a  chain  inclined  at  30°  to  the  rails.  The  frictional  resistances  to  motion  of 
the  truck  amount  to  12  lbs.  per  ton.  Find  how  far  the  truck  will  be  moved 
from  rest  in  one  minute,  and  the  power  which  the  horse  is  exerting  at  the 
end  of  the  minute. 

5.  The  table  below  gives  the  horse-power  trariamitted  by  the  propeller 

shafts  for  different  speeds  in  the  case  of  the  "  Mauretania  "  Atlantic  Liner. 

Draw  a  graph  shewing  how  the  resistance  overcome  varies  with  the  speed. 

Shaft 

horse-power 
12,500 20,000 27,300 37,500 51,000 75,000 

Speed  in knots 

! 
16             18 20 

22 

24- 

26 

6.  A  planing  machine  is  working  with  its  stroke  set  at  4  feet,  and  is  planing 
a  piece  of  work  3  feet  long,  the  tool  clearing  the  work  6  inches  at  each  end. 
There  is  a  constant  frictional  resistance  equivalent  to  45  pounds  at  the  tool, 
and  the  cutting  resistance  is  560  lbs.  more.  The  machine  makes  20  complete 

strokes  per  minute.    Find  its  average  rate  of  working,  in  horse-power. 

If  the  cutting  stroke  take  twice  as  long  as  the  return  stroke,  find  the  average 
speed  of  each,  and  if  the  highest  cutting  speed  is  1|  times  the  mean,  find  the 
greatest  rate  of  working. 

7.  A  wagon  weighing  10  tons  is  running  at  6  miles  per  hour  when  the 
brakes  are  applied  and  it  is  brought  to  rest  in  15  yards.  How  much  work  is 
done  in  bringing  the  wagon  to  rest,  and  what  is  the  space-average  of  the  total 
braking  force  ? 
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8.  A  car,  for  which  the  frictional  resistance  is  30  lbs.  per  ton,  is  travelling 
on  the  level  at  the  rate  of  30  feet  per  second,  when  it  comes  to  a  hill  of  1  in 

20,  and  after  the  speed  has  become  steady  on  the  hill  the  engine  is  working 
at  the  same  power  as  on  the  level.   Find  this  steady  speed. 

If  while  the  car  is  slowing  down  the  tractive  force  of  the  engine  increases 
uniformly  with  the  distance  from  the  bottom  of  the  hill  until  it  reaches  its 

steady  value  on  the  hill,  find  how  far  the  car  travels  before  reaching  its  steady 
speed. 

9.  The  road  and  wind  resistance  to  the  motion  of  a  motor-car  weighing 

30  cwt.  is  given  by  (40  +  0*03  v^)  lbs.,  where  v  is  the  speed  in  miles  per  hour. 
What  horse-power  will  be  required  to  drive  the  car  up  a  hill  of  1  in  30  at  a 
steady  speed  of  20  miles  per  hour  ? 

If  the  maximum  tractive  force  the  motor  can  supply  is  220  lbs.,  what  is  the 
maximum  speed  attainable  up  the  hill  ? 

10.  A  body  is  given  kinetic  energy  by  a  force  acting  on  it.  How  is  the 
force  related  to  the  kinetic  energy  generated  ? 

A  railway  wagon  weighing  12  tons  runs  into  a  stop  when  travelling  at 
6  miles  per  hour.  The  buffer  springs  of  the  wagon  are  such  that  each  exerts 
a  force  of  4  tons  per  inch  of  compression.  Assuming  the  stop  does  not  yield, 
find  how  much  the  springs  are  compressed  when  the  wagon  is  for  the  instant 
brought  to  rest. 

11.  A  motor-car,  weighing  1  ton,  ascends  a  hill  of  slope  1  in  12  at  a 
uniform  speed  of  6  miles  per  hour.  When  it  reaches  the  top  it  begins  to 
travel  down  a  uniform  slope  of  1  in  40.  If  the  tractive  force  produced  by  the 

engine  and  the  road-and-wind  resistance  are  constant,  find  what  the  velocity 
and  the  kinetic  energy  will  be  when  the  car  has  travelled  25  yards  down  the 
slope. 

12.  A  5  ton  truck  is  pulled  from  rest  up  a  slope  of  1  in  50  ;  the  pull  to  just 
move  it  on  the  level  is  126  pounds ;  the  tension  in  the  rope  varies  with  the 
distance  (along  the  slope)  as  given  below.  Find  the  total  work  done,  the 

kinetic  energy  at  the  end,  and  the  horse-power  exerted  at  the  distance  of 
15  feet. 

Distance 
in  feet 0 5 

10 15 20 25 30 35 
40 

Pull  in  lbs. 450 570 620 640 620 550 470 410 350 
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13.  A  body  is  acted  upon  by  a  force  which  causes  motion.  How  are  the 
momentum  and  the  kinetic  energy  generated,  each  related  to  the  force  acting? 

It  is  estimated  that  the  actual  work  done  in  accelerating  a  steamer  of 

1000  tons  displacement  from  rest,  for  the  first  210  seconds,  is  4500  foot-tons, 
and  the  distance  travelled  is  2000  feet.    Find, 

(1)  the  speed  attained, 

(2)  the  space -average  of  the  accelerating  force, 

(3)  the  t^me-average  of  the  accelerating  force. 

14.  The  total  pressure  on  the  base  of  a  shell  during  its  passage  along  the 
bore  is  given  in  the  table  below.  The  total  travel  is  4^  feet  and  it  may  be 
assumed  that  6  per  cent,  of  the  pressure  is  used  in  overcoming  friction  and 

imparting  rotation  to  the  shell.  Plot  the  pressure- distance  curve  and  estimate 
the  muzzle  velocity  of  the  shell,  given  that  it  weighs  12  lbs. 

Distance 
in  feet 0 i i i 1 

1| 

H H 2 n 3 H 4 
25 

Total  pres- 
sure, tons 

4 
54 

97 123 130 124 
106 

91 
81 

62 
50 

40 30 

15.  A  train,  running  on  the  level,  with  steam  shut  off,  has  its  speed 
reduced  from  52  miles  per  hour  to  48  miles  per  hour  in  800  yards.  Assuming 
that  the  resistance  to  motion  is  constant,  find  its  value  per  ton  of  the  train. 

If  the  train  weighs  200  tons,  at  what  rate,  in  horse-power,  must  work  be 
done  to  keep  it  moving  at  50  miles  per  hour  against  the  same  constant  re- 
sistance? 

16.   A  motor  lorry,  of  total  weight  8  tons,  starts  from  rest  and  is  observed 
to  have  the  accelerations  at  different  points  given  below : 

Distance,  feet 0 

10 
20 30 

40 

50 

Acceleration, 
ft.  per  sec.  per  sec. 21       1-57 1-2 

0-87 0-54 0-30 

Find  the  accelerating  force  for  each  distance,  and  plot  a  force-distance 
curve.  From  the  curve,  find  the  total  work  done  in  accelerating,  and  the 
velocity  at  each  distance. 



158 ELEMENTARY  DYNAMICS 

17.  State  the  principle  of  conservation  of  energy  as  it  applies  to  mechani- 
cal problems. 

A  mass  is  suspended  by  a  string  ABC,  3  feet  long,  from  the  point  A,  and 

is  swinging  through  an  angle  of  30°  on  either  side  of  the  vertical.  Find  the 
velocity  of  the  mass  when  it  is  vertically  below  A. 

If  at  this  instant  the  point  B  in  the  string  is  suddenly  fixed,  find  the  new 
angle  of  swing,  AB  being  equal  to  ̂   BC. 

18.  A  light  spring,  whose  inertia  may  be  neglected,  is  such  that  a  |  lb. 
weight  will  compress  it  1  inch.  It  is  compressed  2  inches  and  placed  on  a 
table  so  that  it  will  expand  in  a  vertical  direction.  If  a  ̂   lb.  weight  is  put 
upon  it  and  the  spring  is  released,  what  is  the  velocity  of  the  |  lb.  at  the 
instant  that  it  leaves  the  spring? 

19.  In  fig.  98  A  is  a  hard  steel  shaft  which  can  slide  horizontally  in  the 
bearings  BB.  It  is  provided  with  stops  which  are  just  in  contact  with  the  end 
of  the  spring  bujffer.  A  lead  bullet  moving  with  a  velocity  of  1000  feet  per 
second  strikes  the  end  of  the  shaft  in  the  centre.  The  mass  of  the  shaft  is 

5  lbs.,  that  of  the  bullet  0*04  lb.,  and  the  spring  compresses  1  inch  under  a 
load  of  20  lbs.  The  force  required  to  overcome  the  friction  of  the  shaft  is 
1  lb.  Assuming  that  the  mass  of  the  spring  may  be  neglected,  find  to  the 
nearest  hundredth  of  an  inch  by  how  much  the  spring  is  compressed  by  the 
blow. 

^^:::i 

f  b"
 

■^ 

^ 

Fig.  98. 

20.  A  bullet,  weighing  0*025  lb.  and  moving  with  a  velocity  of  2000  feet 
per  second,  strikes  a  ballistic  pendulum  weighing  20  lbs.,  and  remains  in  it 
after  the  impact.  Determine  the  percentage  of  kinetic  energy  lost,  and  the 
average  pressure  exerted  between  the  bullet  and  pendulum,  supposing  the 
former  to  come  to  rest  after  travelling  six  inches. 

21.  A  railway  wagon  of  total  load  20  tons  is  shunted  on  to  a  siding  and 
reaches  a  hydraulic  buffer  stop  at  a  speed  of  6  miles  per  hour.  The  buffer 
stop  is  such  that  it  exerts  a  substantially  steady  force  of  40  tons  while  the 
buffers  are  being  pushed  in,  but  only  exerts  a  negligible  force  while  returning. 
The  wagon  buffer  springs  each  require  a  force  of  4  tons  to  compress  them 
1  inch. 
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Find  (1)  the  distance  the  wagon  moves  before  coming  to  rest  after  striking 
the  buffer  stop,  (2)  the  velocity  of  the  wagon  at  the  instant  it  leaves  the 
buffer  stop. 

22.  A  steamer  of  10,000  tons,  when  its  engines  are  not  working,  slows 
down  from  7  to  5  feet  per  second  in  90  feet.  Find  the  average  resistance  to 
motion. 

If  the  engines  are  started  and  the  speed  is  uniformly  increased  from  5  to 

7  feet  per  second  in  120  feet  at  what  average  rate  in  horse-power  are  the 
engines  working  during  this  motion,  the  resistance  to  motion  being  taken  as 
uniform,  and  equal  to  the  average  resistance  in  the  first  part  of  the  question? 

23.  A  train  weighing  200  tons  has  its  speed  reduced  by  a  constant  braking 
force  from  60  miles  per  hour  to  40  miles  per  hour  in  4  seconds.  Determine 
the  change  in  the  momentum  of  the  train,  the  change  in  its  kinetic  energy, 
and  the  distance  travelled.  Also  find  the  value  of  the  retarding  force,  taking 
it  as  (1)  the  change  of  momentum  per  second,  and  (2)  the  change  of  kinetic 
energy  per  foot  of  distance. 

24.  The  propulsion  horse-power  required  to  drive  a  steamer  of  12,000  tons 
displacement  at  a  steady  speed  of  20  knots  is  15,000.  Assuming  that  the  re- 

sistance is  proportional  to  the  square  of  the  speed,  and  that  the  engine  exerts 
a  constant  propeller  thrust  at  all  speeds,  find  the  initial  acceleration,  when 
the  steamer  starts  from  rest,  and  the  acceleration  when  the  speed  is  10  knots. 

(Take  1  knot  =  100  feet  per  minute.) 

25.  Shew  that  the  twisting  moment  in  a  shaft  which  is  transmitting 

power  is  given  by  ,  where  H  is  the  horse-power  transmitted  and  N 27rlN 

the  number  of  revolutions  per  minute. 

A  torsion  dynamometer,  which  registers  the  angle  of  twist  per  foot  length 

of  the  shaft  when  running,  was  used  to  determine  the  horse-power  given  out 
by  a  steam  turbine.  The  mean  speed  of  the  shaft  was  found  to  be  2000  r.p.m. 

and  the  dynamometer  registered  8i^'25  minutes.  Find  the  horse-power  given 
out  by  the  turbine,  having  given  that  a  couple  of  72  inch-lbs.  applied  to  the 
shaft  produces  an  angle  of  twist  per  foot  length  of  one  minute. 

26.  The  drum  of  a  capstan  has  an  effective  diameter  of  10  inches.  Eight 
men  on  the  capstan  bars,  walking  round  three  times  a  minute,  at  a  mean 

radius  of  5^  feet,  can  produce  a  pull  of  2i  tons  in  the  rope  being  wound  up. 
Find  the  horse-power  got  out,  and  the  horse-power  wasted  in  friction  etc., 
assuming  each  man  exerts  a  force  of  70  lbs.  on  the  bars.  The  tension  in  the 
rope  coming  off  the  drum  may  be  neglected. 
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27.  What  is  understood  by  the  moment  of  inertia  of  a  body  about  an  axis? 

Shew  that  the  kinetic  energy  of  a  body  rotating  with  angular  velocity  w 

about  an  axis  is  1 1  w^,  where  I  is  the  moment  of  inertia  of  the  body  about  the 
axis. 

A  rectangular  door  of  sides  10  and  6  feet  and  weighing  500  lbs.,  swings 
about  a  horizontal  axis  fixed  along  its  greater  edge ;  find  its  angular  velocity 
as  it  reaches  the  vertical  from  rest  in  the  horizontal  position.  What  is  the 
pull  on  the  axis  as  it  reaches  the  vertical?  What  would  be  the  angular 

velocity  if  the  hinges  exert  a  constant  frictional  couple  of  100  inch-lbs.? 

28.  An  engine  works  against  a  constant  load  which  absorbs  25  horse- 
power when  the  speed  is  250  revolutions  per  minute.  The  flywheel  of  the 

engine  weighs  3  tons,  and  its  radius  of  gyration  is  3  feet. 

Find  (1)  the  work  done  against  the  load  in  one  revolution,  (2)  the  energy 
stored  in  the  flywheel  when  the  speed  is  250  revolutions  per  minute. 

If  the  source  of  power  be  cut  off  while  the  load  remains  constant,  in  how 
many  revolutions  will  the  speed  drop  from  250  to  240  revolutions  per  minute? 

20.  The  figure  below  shews  the  torque  exerted  on  the  crank  of  a  two- 
cylinder  tandem  gas  engine  for  different  cranks  angles  during  one  revolution. 
The  torque  scale  is  such  that  1  inch  =  40,000  lbs.  feet. 

The  moment  of  inertia  of  the  flywheel  is  90  tons  ft.^  units,  and  the  speed 
is  200  revolutions  per  minute.  The  engine  is  working  against  a  constant  re- 

sisting moment,  and  giving  the  same  torque-angle  diagram  every  revolution. 

Find  graphically  the  resisting  torque  and  estimate  the  maximum  percentage 
fluctuation  of  flywheel  speed. 

360' 

Fig.  99. 
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30.  A  6-inch  shaft  is  being  tuwied  in  a  lathe  and  it  is  found  that  the 
tangential  pressure  on  the  tool  at  the  cutting  edge  is  785  lbs.  The  traverse 
of  the  saddle  is  ̂ V  inch  per  revolution  of  the  mandrel  and  the  speed  of  the 
latter  is  20  revolutions  per  minute.  Find  the  energy  usefully  expended  in 

cutting  per  foot  of  traverse.  Find  also  the  efficiency  of  the  machine  if  1*3 
horse-power  is  being  supplied  by  the  belt. 

81.  Two  uniform  discs  of  steel  are  each  3  feet  in  diameter.  They  are 

mounted  side  by  side  on  the  same  shaft,  and  are  free  to  move  indepen- 
dently and  without  friction.  One  disc  A  is  rotating  at  500  revolutions  per 

minute,  the  other,  B,  is  at  rest.  A  projection  on  the  disc  A  impinges  on 

a  similar  projection  on  the  disc  B  and  the  blow  dissipates  one-fifth  of  the 
kinetic  energy.  Find  the  angular  velocities  of  the  two  discs  after  the  blow, 
and  determine  how  long  it  will  be  until  the  projection  on  B  overtakes  the 
projection  on  A. 

Also  find  the  magnitude  of  the  blow,  if  each  disc  weigh  250  lbs.  and  if  the 
projections  on  the  disc  are  each  15  inches  from  the  centre  of  the  shaft. 

32.  In  example  (14),  p.  109,  shew  that  the  kinetic  energy  of  the  system  is 
reduced  in  the  ratio  4  to  5. 

L.  E.  D.  11 



CHAPTER  VII 

Units  and  Dimensions 

In  the  first  chapter  we  noted  that  there  were  three  fundamental 

conceptions,  space,  mass,  and  time,  and  we  saw  how  these  were 
measured  in  certain  units.  The  units  were  those  of  length,  mass, 
and  time. 

We  also  called  attention  to  the  fact  that  all  physical  quantities 
could  be  defined  in  terms  of  these  fundamental  units.  In  the 

previous  chapters  we  have  introduced  all  the  physical  quantities 

we  require  jn  elementary  dynamics,  and  we  have  based  the 

measurement  of  each  of  these  quantities  directly  on  the  funda- 

mental units,  or  on  phj^sical  quantities  the  measurement  of  which 
had  already  been  based  on  these  units. 

It  will  be  useful,  as  a  revision  of  the  previous  chapters  and  also 

for  other  purposes,  to  examine  again,  in  some  detail,  how  each  of 
the  physical  quantities  we  have  introduced  and  used  is  related  to 
the  units  of  length,  mass,  and  time.  We  shall  then  be  able  to  see 

immediately  how  the  measure  of  each  quantity  would  be  affected 

by  a  change  in  any  or  all  of  the  fundamental  units.  We  will  de- 
note these  by  L,  M,  and  T  respectively. 

Let  us  consider  density.  This  we  defined  as  the  mass  per  unit 

volume,  i.e.  the  mass  of  a  body  divided  by  the  volume  of  the  body. 

Now  the  volume  is  equal  to  the  product  of  length,  breadth  and 

thickness,  and  each  of  these  is  a  length.  We  say,  therefore,  that 
volume  has  three  elements  of  length  or,  has  the  dimensions 

(length )^  i.e.  L=^. M 

.  *.  Density  has  the  dimensions  -^ 

=  L-MVI .  T", 

T^  denoting  that  it  has  no  time  dimension. 
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The  significance  of  this  will  perhaps  be  realised  better  if  we  take 
a  concrete  example. 

Example  (1).  The  density  of  steelin  c.G.s.  units  is  7 '78.  Find 
the  density  in  f.p.s.  units,  given  that,  1  centimetre  =  0'0^2%  footf 
and  1  ̂ ram=r  0-00221  Ih. 

The  dimensions  are  L~^ .  M  .  T°. 

.*.  The  density  in  lbs.  per  cubic  foot 

=  7-78  x(0-0328)-3x  0-00221 
=  484. 

We  will  now  find  the  dimensions  of  certain  quantities  in  length, 
mass,  and  time. 

Dimensions 

Absolute  System  of  Units 

Velocity  (linear)  =  ̂^^  =  L .  J-^  -  L  .  M^ .  T~\ 

Acceleration  (linear)  =  ̂̂   ̂^^  7  ̂  L .  T-^ .  J-^  =  L .  M<* .  T'^. ^  '        time 

Angle  '(radians)  =  ̂ ^  -  L .  L'^  =  L^ .  M^  .  T^. 

Angular  velocity  =  — ;   =  T~^  ̂   L^ .  M^ .  T~^. time 

Angular  acceleration  =  ̂"^^  ̂ !  ̂^  ̂^^  ̂  =  T'^ .  T-^  =  L°  .  M^ .  T~\ time 

Momentum  ■=  mass  x  velocity  =M.L.T~^=L.M.  T~^. 
,-            momentum  ,         ,      ,      ..    _^  „ 
Force  =   -.   =  M  .  L  .  T-i .  T-i  =  L  .  M  .  T-2. time 

Weight  =  force  =  L  .  M  .  T-2. 

Impulse  =  force  x  time  =  L  .  M  .  T"- .  T  -  L  .  M  .  T~^. 

Angular  momentum  =  momentum  x  distance  =  L .  M  .  T"^ .  L 

-  L2 .  M  .  T-i. 
11     2 
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Torque  =  force  x  distance  =  L .  M  .  T"^ .  L  =  L^ .  M  .  T'^. 

Impulsive  torque  =  torque  x  time  =  L^ .  M  .  T~^ .  T  =  L^  .  M  .  T~^. 
Moment  of  inertia  =  mass  x  (distance)^  =  M  .  L^  =  L^ .  M  .  T^, 

Work  =  force  x  distance  ̂ L.M.T-^.L^L^.M.  T"2. 

Energy  =  capacity  for  work  =  L^ .  M  .  T"^. 
worlc 

Powers  -r^  =  LMVI.T-2.T-i=L2.M.T-3. time 

Use  of  dimensions  in  checking  formulae 

If  we  have  an  equation  involving  physical  quantities,  the 

dimensions  in  each  of  the  units,  length,  mass,  and  time,  must  be 

the  same  on  the  two  sides  of  the  equation.  If  this  were  not  so, 

by  changing  the  units  of  length,  mass,  and  time  we  should  alter 
the  equation. 

Suppose,  for  example,  in  an  equation,  the  dimensions  of  the  left- 

hand  side  in  mass  were  M^,  and  on  the  right-hand  side  M,  and  we 
wished  to  change  from  lbs.  to  grams.  We  should  multiply  the  left- 

hand  side  by  (453-6)2  and  the  right-hand  side  by  453-6,  which 
would  completely  alter  the  equation. 

We  will  examine  a  few  of  the  formulae  we  have  derived  in  the 

previous  chapters.    The  student  should  examine  all  the  remainder. 

(1)  Net  work  done  =  kinetic  energy  gained, 

or  p  .s  =  \  Mv\ 

The  left-hand  side  has  dimensions,  L^.  M  .  T"^. 

The  right-hand  side  has  dimensions,  M  .  (L .  T"^)^ 

=  L2.  M.T-2. 

(2)  Acceleration  =  v .  -^ , 

The  left-hand  side  has  dimensions,  L .  T-^ 

L  .  T~^  X  L  .  T~' 
The  right-hand  side  has  dimensions,  —' L 

L.T-2. 
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3)  Torque  -  moment  of  inertia  x  angular  acceleration, 
T-:I.A. 

The  left-hand  side  has  dimensions,  L^ .  M  .  T"^. 

The  rightrhand  side  has  dimensions,  L^.  M  .  T~^. 

Example  (2).  Find  the  number  of  watts  in  1  horse-power, 

having  given:  1  lh.  =  ̂b^'^  grams,  ly^.^^  30*48  cms.,  and g  =  ̂2'2  feet 
per  sec.  per  sec. 

\  horse-power  =  550  ft.-lbs.  per  sec. 

=  550  X  32*2  abs.  f.p.s.  units  of  power. 

The  dimensions  of  power  are  L^ .  M  .  T~^. 

/.  1  horse-power  =  550  x  32*2  x  30*482  x  453*6 

=  746  X  10^  ergs  per  sec. 
=  746  watts. 



CHAPTER  VIII 

Simple  Harmonic  Motion 

In  many  cases  of  motion  we  have  a  body  which  moves  back- 

wards and  forwards  about  a  mean  position,  as,  for  example,  the 
piston  of  a  steam  engine  or  the  pendulum  of  a  clock. 

We  will  now  investigate  a  particularly  simple  form  of  such  a 
motion  called  Simple  Harmonic  Motion. 

A  body  is  said  to  move  with  a  simple  harmonic  motion  in 

a  straight  line  when  it  has  an  acceleration  directed  towards  some 

fixed  point  in  its  path,  and  proportional  to  the  distance  of  the  body 

from  the  fixed  point. 

Suppose,  for  example,  that  a  body  P  moves  in  the  straight  line 

A'A  with  simple  harmonic  motion  about  a  fixed  point  O. 

Fig.  100. 

The  acceleration  will  be  in  direction  PO  always,  and  equal  to 

/A.  OP,  where  /x  is  a  constant*. 

If  we  consider  OA  to  be  the  positive  direction  of  the  displace- 
ment, the  acceleration  along  PO  will  be  negative,  and  we  must 

write  V — 
Acceleration  -  -  fi ,  s, 

where  s  =  OP. 

*  It  should  be  noted  that  /a  is  a  constant  for  a  definite  system  of  units, 
but  its  value  will  change  if  the  unit  of  time  be  changed.  Writing  accelera- 

tion =/x  X  distance,  we  see  immediately,  that  in  order  that  the  dimensions  of 
the  two  sides  of  the  equation  may  be  the  same,  /x  must  have  dimensions 

LMVI« .  T-2. 
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Now  suppose  the  body  is  started  with  a  given  velocity,  u  say, 

when  it  is  at  O,  then,  since  the  acceleration  is  always  towards  O, 
it  follows  that  the  velocity  will  gradually  be  diminished  to  zero, 

and  the  body  will  for  an  instant  be  at  rest  at  the  point  A,  say. 
The  body  P  will  then  start  moving  back  to  O  with  a  velocity  which 

will  increase  to  n,  but  in  the  direction  AO.  Exactly  the  same  type 
of  motion  will  now  occur  to  the  left  of  O.  We  see  then,  that  the 

body  will  continue  to  move  backwards  and  forwards  along  the 

path  AA'. 

The  velocity-time  curve  must  be  something  like  that  shewn  in 
fig.  101, 

Fig.  101. 

where  OB  represents  the  time  to  reach  the  first  rest  position  A, 

and  00  represents  the  time  to  make  one  complete  reciprocation,  i.e. 

the  time  for  the  body  to  travel  from  O  to  A,  A  to  A'  and  A'  to  O. 
Also,  we  can  see  that  the  displacement-time  curve  must  be  some- 

thing like  the  dotted  curve  in  tig.  101,  where  BD  represents  OA. 

Now  in  order  to  analyse  the  motion  we  want  to  know  the  exact 
shape  of  these  curves. 

For  the  space-time  curve  let  us  try  the  equation 

s  =  rt  sin  ht. 
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From  the  example  on  p.  14  we  have 

The  velocity,  v  =  -j-^ab  cos  bt. 

dv 
The  acceleration,  a  =  -y^  =  -  a6^  sin  ht 

at 
=  -b\s. 

If,  therefore,  we  make  b^  equal  to  /x,  we  see  immediately  that 
this  displacement  is  the  one  w^e  want. 

We  have  then  for  simple  harmonic  motion 

The  acceleration  —  —  fx .  s. 

The  velocity  =  a .  Jfx .  cos  \/fxt. 

The  displacement  =  a  sin  J  fit. 

Also,  we  may  obtain  the  acceleration  in  terms  of  the  time,  and 

the  velocity  in  terms  of  the  displacement. 

The  acceleration  =  —  /xa  sin  ̂ J/xt 

The  velocity         =  ajfx  .  v  1  -  sin^  si  fit 

av^.yi-(iy 
=  J jx .  sja^  -  s\ 

The  periodic  time  is  the  time  for  one  complete  vibration. 

This  is  the  time  for  the  body  to  move  from  O  to  A,  A  to  A'  and 
back  to  O. 

From  the  curve  we  see  that  this  is  represented  by  the  length  OC, 

for  which  J  fit  =  27r, 

.*.  the  periodic  time  =  — p . 

The  greatest  displacement  (a)  on  either  side  of  the  centre  is  called 
the  amplitude  of  the  motion. 
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It  should  be  noted  that  the  periodic  time  is  independent  of  the 

amplitude  and  depends  only  on  the  value  of  /x. 
Acceleration 

'  Displacement  * 
Hence  we  may  say,  for  any  simple  harmonic  motion, 

The  periodic  time  =  27r 

/Di
 

Displacement  • 

///////////// 

Acceleration 

Example  ( 1 ).  A  mass  of  i  lbs.  is  suspended  from  the  end  of  a 
light  helical  spring,  and  when  the  system  is  at  rest  the  spring  is 

found  to  be  extended  3  inches.  The  mass  is  now  slowly  depressed  a 
further  distance  of  2  inches  and  then  let  go. 

Find  {a)  the  periodic  time  of  vibration.,  (b)  the 
maxim,um,  velocity. 

Experiment  shews  that  the  pull  produced  by 
a  helical  spring  is  proportional  to  the  extension. 

If  P  =  the  pull,  and  x  —  the  extension,  then 
we  may  write 

P  =  \x,  where  A,  is  a  constant  for  the  spring. 

In  this  case,  when  P  =  4^  pdls., 

x  =  ̂   feet. 

.    A        ̂  

Fig.  102. or,  A.  ==  1 6^. 

Let  s  =  the  displacement  at  any  instant  downwards  from  the 
equilibrium  position. 

From  the  2nd  law  of  momentum  we  have 

(P  —  ig)  =  4a,  where  a  =  the  acceleration  upwards. 
P-4^ 

4 =  ig.s, 
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or,  a  varies  as  the  displacement,  and  therefore  the  motion  is  simple 
harmonic. 

rp,  •    1-     ,•  n  /Displacement 
ihe  periodic  time  =  Stt  x  .  /     — ^-   V   Acceleration 

"•/I 

iff 

=  — 7=r  seconds. 

4v/2 
The  number  of  complete  vibrations  per  minute 

=    X  bO 

=  108. 

The  maximum  velocity  occurs  when  the  mass  passes  the  equi- 
librium position,  i.e.  when  s  =  0. 

.'.  The  maximum  velocity  =  Jfx .  a 

4v^2 

feet  per  second. 

Oscillation 

Now  suppose  instead  of  a  mass  moving  in  a  straight  line  we 

have  a  mass  oscillating  in  a  circle  about  a  fixed  axis.  It  is  easily 

seen  that  all  the  reasoning  we  have  just  employed  will  hold,  so 

long  as  we  substitute  angular  displacement  for  linear  displacement, 

angular  velocity  for  linear  velocity  and  angular  acceleration  for 
linear  acceleration. 

Simple  Pendulum 

A  simple  pendulum  is  a  mass,  which  may  be  considered  small, 

attached  to  a  fixed  point  by  a  weightless  rod  or  string  and  oscil- 
lating in  a  vertical  plane. 
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Let  m  =  the  mass,  I  =  the  length  of  the  string,  and  let  the 

string  make  an  angle  B  with  the  vertical  at 
some  instant  of  time. 

Treat  the  problem  as  one  of  rotation  about 

O,  and  apply  the  2nd  law  of  momentum  to 
the  mass  m. 

The  only  forces  acting  on  m  are  the  ten- 
sion T  in  the  string  and  the  weight  mg. 

The  turning  moment  about  O 

—  mgl  sin  6. 

The  moment  of  inertia  of  m  about  O  -  ml^, 
since  the  mass  m  is  small. 

.-.  mgl  sin  6  =  —  rrd'^ .  A, 
where   A  is  the  angular  acceleration  in  a 
counter-clockwise  direction. 

mgl  sin  Q 
.'.  The  angular  acceleration  = 

mr- 
^ .  sin  0, i.e.  the  angular  acceleration  varies  as  sin  0. 

This  is  not  a  case  of  simple  harmonic  motion,  but  if  we  keep 

the  angle  6  always  small,  i.e.  the  amplitude  small,  then  sin  6  =  0, 

very  nearly.     In  this  case  we  may  write. 

The  angular  acceleration  =  j.O, V 

i.e.  the  angular  acceleration  varies  as  the  angle  of  displacement, 
and  the  motion  is  simple  harmonic. 

The  periodic  time  =  2i 
-2i W  Ac 

Displacement 
Acceleration 

The  fact,  that  for  small  swings  the  pendulum  has  a  definite 

periodic  time  independent  of  the  amplitude,  is  the  reason  why  it  is 
frequently  employed  to  control  clocks. 
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Example  (2).  Find  the  length  of  a  simple  pendulum  to  heat 
seconds,  i,e.  a  pendulum  which  makes  one  complete  oscillation  in 
2  seconds. 

The  periodic  time  =  27r  .  /  - . 

or, 

V   32' =  3-25  feet. 

It  may  be  noted  that  if  we  keep  the  length  of  the  pendulum 

exactly  constant,  then  for  different  positions  on  the  earth's  surface 
the  periodic  time  will  vary  inversely  as  the  square  root  of  the 

acceleration  due  to  gravity.  This  gives  us  a  convenient  means  of 

comparing  the  values  of  g  at  different  places. 

Compound  Pendulum 

A  body  which  is  arranged  to  swing  like  a  pendulum,  but  in 
which  the  whole  mass  is  not  concen- 

trated at  a  point,  is  called  a  compound 

pendulum. 

Let  O  be  the  centre  of  suspension,  G 

be  the  centre  of  gravity,  and  let  the  body 

be  at  some  instant  in  a  position  such 

that  OG  is  inclined  at  an  angle  6  to  the 

vertical.    See  fig.  104. 

Let  OG  =  h. 

The  weight  may  be  considered  to  act 

through  G. 

The  restoring  moment  about  the  axis 

O  =mg  xOO  sin  6 
=  mgh .  Of 

if  e  is  always  small.  Fig.  104. 
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The  equation  of  motion  becomes 

I .  A  =  -  mgh .  0, 

where  I  is  the  moment  of  inertia  of  the  body  about  O,  or, 

i.e.  the  body  has  a  simple  harmonic  motion. 

The  periodic  time  =  27r  ̂   — j- 

where  h  is  the  radius  of  gyration  of  the  body  about  O. 

For  the  simple  pendulum,  the  periodic  time 

Hence  the  length  of  a  simple  pendulum  which  has  the  same 
periodic  time  as  the  compound  pendulum 

~  h' 

This  length  is  called  the  length  of  the  simple  equivalent  pendu- 
lum (s.E.p.). 

Example  (3).  The  centre  of  gravity  of  a  connecting  rod  is  4*5 
feet  from  the  centre  of  the  small  end.  When  suspended  on  a  knife 
edge  at  the  centre  of  the  small  end  it  has  the  same  periodic  time  as 

a  plumb-line  of  Q'2  feet.  If  the  rod  weighs  500  lbs,,  find  the  mo- 
ment of  inertia  about  an  axis  through  the  centre  of  gravity  parallel 

to  the  axis  of  the  end. 

We  have  the  simple  equivalent  pendulum 

~  h'  , 
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where  k  is  the  radius  of  gyration  about  the  axis  of  the  small  end, 
and  h  is  the  distance  4 -5  feet. 

k^ 

6-2  = 

4-5' 

or. 
A;=x/6-2x4-5 
=  V27^ 

The  moment  of  inertia  about  the  axis  through  the  centre  of 

gravity 
=  Mk^  -  MA2 

=  500  {27-9 -4-52} 

=  500  X  (27-9 -20-3) 

=  3800  lbs.  ft.2 

Example  (4).  A  solid  cylinder  of  radius  r  is  free  to  oscillate 
in  a  vertical  plane  about  a  fixed  axis  A  as  shewn  in  the  figure  below. 

21ie  cylinder  is  connected  to  the  link  IKE  by  a  pin  joint  at  the  axis, 
which  is  horizontal. 

Show  that  if  the  inertia  and  weight  of  the  link  AB  is  negligible 

Fig.  105. 
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and  there  is  no  friction,  the  periodic  time  for  a  small  oscillation 

ivill  be  given  by  2ir  .1  — . 

Further  shew  that  if  the  cylinder  is  fixed  to  the  link  the  periodic 

time  will  be  increased  in  the  ratio 2R-^  +  r2 

2R^ 

\st  Ca^e.    Since  the  pin  joint  at  B  is  frictionless,  the  onlj  ex- 
ternal forces  acting  on  the  cylinder  are 

the  pull  P  along  link  BA  and  the  weight 

of  the  cylinder  mg  acting  vertically  down- 
wards. 

Now  since  there  is  no  couple  on  the 

cylinder,  it  will  have  no  rotation  about 
B,  and  a  diameter  which  is  horizontal, 

say,  will  remain  horizontal,  i.e.  there  will 

be  no  relative  motion  between  any  point 
of  the  cylinder  and  B. 

Therefore  the  acceleration  of  every  point 
of  the  cylinder  will  equal  the  acceleration 

of  B.  The  latter  may  be  considered  as 
consisting  of  two  components, 

(1)  an  acceleration  w^BA  in  the  direc- 
tion BA,  where  w  is  the  angular  velocity 

of  AB,  and 

(2)  an  acceleration  a,  say,  perpendicular  to  BA. 

Also,  a  =  R .  O,  where  O  is  the  angular  acceleration  of  BA. 

Resolving  the  forces    on    the    cylinder   perpendicular   to    BA 
we  get 

mg  sin  6  =  —  mR  .  fi. 

Fig.  106. 

I.e. O -  ̂  .  ̂,  if  ̂   is  small. 

This  is  a  simple  harmonic  motion. 

The  periodic  time 

i.y 
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2nd  Case.    If  the  cylinder  is  fixed  to  the  link  it  will  rotate  with 

the  link  and  we  get  a  compound  pendulum  as  treated  on  p.  172. 

YYtV 

The  moment  of  inertia  about  A  =  mR^  +  —^  . 

.'.  The  (radius  of  gyration)^  about  A  =  R^  +  — . 

The  centre  of  gravity  of  the  pendulum  is  at  a  distance  R  from  A. 

2~
' 

.'.  The  periodic  time     _    ̂   , 

i.e.  the  periodic  time  is  increased  in  the  ratio  ̂   /   
^  V       2R2 

It  will  be  seen  that  in  the  first  case  the  arrangement  behaves 

as  a  simple  pendulum  of  length  R,  and  it  will  be  remembered  that 
in  the  simple  pendulum  the  mass  was  to  be  considered  small,  i.e. 

we  were  neglecting  the  rotation  of  the  mass  itself  about  its  centre 

of  mass.    This  is  equivalent,  in  the  above  example,  to  neglecting 

the  term  — ^  . 

Example  (5).  The  balance  wheel  of  a  ivatch  weighs  ̂ i^  ounce^ 
and  its  radius  of  gyration  is  J  inch.  It  is  controlled  by  aflat  spiral 

spring  and  has  a  periodic  time  of  \  second.  What  torque  per 

degree  of  twist  must  the  spring  exert  ? 

Let  X  -  the  torque  in  lbs.  inch  exerted  by  the  spring  per  degree 
of  twist. 

If  the  wheel  is  rotated  through  6  radians  from  its  mean  position, 
then 

The  restoring  couple  due  to  the  spring 

=   Tn—^  Pdls.  ft. 
TT  X    12 

Let  A  =  the  angular  acceleration  of  the  wheel  in  the  direction 
of  twist. 
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The  equation  of  motion  of  the  wheel  is, 

300 
1\2  X.^xlSOx^r 

X  A  =  —   - 

A  = 

TTX    12 

A.  X  15  X  4800  X  16  X  144  x  32 .6 

=  -(1-89  X  lO^x  A).^. 
27r  1 

The  periodic  time  =    ,  -  ̂   . 
Vl-89xl0»xA      2 

.-.  X Ui 

1-89x10'' 

8-96  X  10-8  lbs.  ins. 

i I 

Harmonic  Motion  and  Circular  Motion 

We  will  now  see  how  we  can  obtain  mechanically  a  simple 
harmonic  motion  from  a  circular 

motion  or  vice-versa. 

In  fig.  107,  Q  represents  a  pin 
fixed  to  a  circular  disc  which  is 

rotating  about  O.  This  pin  en- 
gages with  a  slotted  link  K  con- 

strained by  guides  to  move  in  a 
line  passing  through  O. 

As  the  disc  is  rotated  the  pin 
Q  will  slide  in  the  slot,  and  the 
link  K  will  move  backwards 

and  forwards  in  a  straight  line. 

Draw  QP  perpendicular  to  the 
line  of  motion  of  K,  then  the 
motion  of  P  will  be  the  same  as 
the  motion  of  the  link  K. 

Suppose  the  disc  is  rotated 

with  a  constant  angular  ve- 
locity OJ. 

L.  E.  D.  12 
Fig.  107, 
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The  acceleration  of  Q  =  w^ .  QO,  and  is  always  towards  O. 

The  acceleration  of  P  =  the  component  of  the  acceleration  of  Q 
in  the  line  PO,  ^ 

=  (iP  .  QO  .  cos  POQ 
=  0)2  .   PO, 

i.e.  the  acceleration  of  P  is  always  towards  O,  and  varies  as  its 

displacement  from  O. 

.'.  P  has  a  simple  harmonic  motion. 
It  is  easy  to  see  that  the  periodic  time  is  the  time  for  Q  to 

make  one  complete  rotation,  i.e.  —  .    Here  w^  corresponds  to  /a  in 

the  previous  pages. 

The  other  results  follow  very  simply. 

The  velocity  of  P  =  the  component  of 

Q's  velocity  in  the  direction  OP, A 

=  <o  .  OQ  .  sin  POQ 
A 

=  u) .  OQ .  cos  QOC, 

where  00  is  perpendicular  to  OP  (fig.  107). 

If  OQ  =  cr,  and  if  we  start  measuring 
the  time  when  P  is  at  O, 

the  angle  QOC  =  (at. 

.',  The  velocity  of  P  =  wci  cos  int. 
For  the  displacement,  in  the  same  way, 

we  have 
s  =  OP 

=  a  sin  oit. 

Crank  and  con^iecting  rod 

In  the  crank  and  connecting  rod 

mechanism,  used  in  steam  engines  and 

other  machines,  the  slotted  link  is  replaced  by  a  connecting  rod 

QA,  as  shewn  in  fig.  108.  The"  crosshead  has  not  a  true  simple 
harmonic  motion. 

Fig.  108. 
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We  can  see,  however,  that  if  the  rod  QA  is  very  long  compared 
with  the  crank  OQ,  then  the  angle  <fi  will  always  be  small  and  the 

motion  of  A  will  be  very  nearly  the  same  as  that  of  P,  where  QP 
is  perpendicular  to  the  line  of  stroke, 

i.e.  A  has  approximately  a  simple  harmonic  motion. 

Sxample  (6).  The  slide-valve  of  a  steam  engine  has  a  total 
travel  of  4  inches.  It  is  driven  from  the  crank  shaft  hy  an  eccentric^ 
the  rod  of  which  is  so  long  com^pared  with  the  travel  that  the  motion 

of  the  valve  may  he  considered  simple  harmonic.  If  the  crank  slwft 

rotates  at  240  revolutions  per  mifiute,  find  (1 )  the  maximum,  velocity 

of  the  valve,  (2)  the  velocity  of  the  valve  at  one-third  of  the  stroke, 
(3)  the  time  to  travel  the  middle  third  of  its  path. 

Fig.  109. 

Let  AA'  represent  the  travel  of  the  valve,  i.e.  4  inches.  Draw 
a  circle  with  AA'  as  diameter.  The  motion  of  the  valve  will  be 

given  by  the  component  of  motion,  parallel  to  AA',  of  a  point  Q 
rotating  round  the  circle  with  an  angular  velocity  (w)  equal  to  that 
of  the  crank  shaft. 

27r  X  240 
60 

=  Stt  radians  per  second. 

12—2 
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(1)  The  maximum  velocity  will  occur  when  the  valve  is  at  O, 
i.e.  Q  is  at  Qj. 

.*.  The  maximum  velocity  =  Stt  x  ̂ ^ 

=  4-19  feet  per  second. 

(2)  Let  0P2  =  |^AA'. 

The  velocity  at  one-third  stroke 

=  4-19  sin  (9 

=--  4-19  X  — -- 

OQ2 

_  4-19  X  n/2^-(|)^ 
2 

=  3*94  feet  per  second. 

(3)    LetOPg^l^AA'. 
The  time  to  travel  the  middle  third  of  the  stroke,  i.e.  P2P3, 

=  the  time  for  Q  to  rotate  through  an  angle  (tt  —  26) 

IT -26      '     ̂  
=  —5 —  seconds. 

OTT 

Now  cos  6  =  \^ 

i.e.  6  =-  70-5°  =  0-391  tt  radians. 

.    rru    ..               •    A      1-0-782 . .  Ihe  time  required  =   o 

=  0-0272  second. 

Example  (7).  The  drum  of  a  steam  engine  indicator  is  driven 

by  a  cord  wrapped  round  part  of  the  drum  and  is  controlled  hy  a 

helical  spring  which  always  exerts  a  couple  opposed  to  that  produced 

hy  the  pull  of  the  cord.  The  end  of  the  cord  has  a  motion  propor- 

tional to  the  piston's  motion,  and  the  latter  Tnay  be  assumed  to  be 
simple  harmonic.  Shew  that,  neglecting  friction  and  the  effect  of 

stretch  of  the  cord,  the  spri7ig  must  he  wound  up  so  that  the  mean 
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torque  it  exerts  on  the  drum  is  not  less  than  the  absolute  magnitude 

— ^  -  1  L  where  N=  the  speed  of  the  engine  in  revolutions  per 

minute,  n  =  the  number  of  oscillations  the  drum  would  make  per 

minute  if  oscillating  freely  under  the  control  of  the  spring^  \  =  the 

torque  required  to  twist  the  spring  through  1  radian,  and  a  =  the 
amplitude  of  the  motion  of  the  drum. 

Fig.  110. 

Let  0  =  the  angle  of  rotation  of  the  drum  measured  in  a  clock- 
wise direction  from  the  mean  position. 

Let  C  =  the  couple  produced  by  the  spring  for  this  position.  ' 

„    T  =  the  tension  in  the  cord. 

,,    r  =  the  radius  of  the  drum. 

,,     I  =:  the  moment  of  inertia  of  the  drum. 

The  resultant  torque  on  the  drum  =  Tr-C. 

.'.  From  the  2nd  law  of  momentum  we  have 

Tr-C  =  I.A    (1), 

where  A  is   the  angular  acceleration   measured   in  a  clockwise 
direction. 
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Let  (f>  —  the  angle  of  twist  of  the  spring  when  the  drum  is  in  its 
mean  position. 

For  angle  of  rotation  0,  the  angle  of  twist  in  the  spring  =  {<f>  +  0). 

.'.  c  =  \(<f>  +  0). 

Substituting  in  (1)  we  get 

T.r-X(<^  +  ̂ )-I.A   (2). 

The  motion  of  the  end  of  the  string  is  given  by 

27rN 
x  =  ra  sin  wt,  where  ot  =  -^^  . 

But  x  =  re, 

.'.  0  =  a  sin  oit 

Also  A  ==  —  ao)^  sin  (lit. 

.'.  From  (2)  we  get 

Tr  =  \  (<j>  +  a  sin  wt)  —  lacu^  sin  w^, 

i.e.  Tr  =  \(f>  —  (law^  —  Xa)  sin  lot. 

Now  if  the  drum's  motion  is  to  be  the  same  as  that  of  the  string 
T  must  always  be  positive,  and  if  (law^  —  Xa)  is  positive,  A^  must 

be  not  less  than  (laay^  -  \a)  sin  mt. 
The  maximum  value  of  sin  mt^l. 

.* .  \<f>  <^  law"  —  Xa. 

But  X<fi  =  the  mean  torque  due  to  the  spring. 

,'.  The  mean  torque  <(;  Xa  \— — IV       (3). 

Suppose  the  drum  were  oscillating  with  its  own  spring,  and  there 
were  no  cord,  we  should  have 

-X(9  =  I.A, 
X    ̂  

I.e.  

A  =  -  =  .d, 

which  is  a  simple  harmonic  motion. 
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The  periodic  time -v/;- 

But  the  periodic  time 

_60 

n 

I      
 
602 

Also "  =60'^    • 

.-.  From  (3), 
the  mean 

torque  <j:  Xa  j  — ^  - 

-■) 

If  (laoo^  —\a)  is  negative,  i.e.  (  — ^  -  1  j  is  negative,  then  we  must 

take  sin  co^  =  —  1 ,  and  we  get 

the  mean  torque  <j;  Xa  -^  1   ^  r  » 

i.e.  the  mean  torque  must  not  be  less  than  the  absolute  magnitude 

of  Xa  -^  — i 

Examples.   Chapter  VIII 

X.  A  mass  is  suspended  at  the  end  of  a  light  vertical  spring,  and  when  at 
rest  stretches  the  spring  I  feet.  Shew  that  if  it  is  slightly  displaced  from  this 
position  of  rest  and  then  let  go  it  will  vibrate  with  a  periodic  time  equal  to 

27r  .  /  - ,  where  g  is  the  acceleration  due  to  gravity  in  feet  per  second  per 

second. 

2.  A  body  of  mass  2  lbs.  moves  in  such  a  way  that  the  curve  connecting 
its  displacement  (in  feet)  from  a  given  point  in  its  line  of  action  and  the  time 
(in  seconds)  is  represented  by  the  equation  s  =  2sin3«.  Find  the  time  of  a 
complete  oscillation,  and  the  force  acting  on  it  when  at  a  distance  of  1  foot 

from  the  fixed  point.    Plot  the  velocity-time  curve  for  a  complete  oscillation. 
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3.  A  pendulum  of  a  clock  beats  seconds.  If  the  clock  keeps  correct  time 

in  one  place,  how  many  seconds  per  day  will  it  lose  in  a  place  where  the  ac- 
celeration due  to  gravity  is  decreased  by  y^  per  cent.? 

4.  A  part  of  a  machine  weighing  60  lbs.  describes  Simple  Harmonic  Motion, 
making  180  complete  vibrations  per  minute,  and  the  length  of  the  stroke  is 
2  feet.  Find  the  greatest  velocity,  and  the  force  acting  on  the  moving  part 
at  one  end  of  its  stroke  and  at  ̂   of  its  stroke. 

5.  A  uniform  rod,  weighted  at  one  end,  floats  in  water  with  its  axis  vertical 
and  part  of  the  rod  projecting  above  the  free  surface.  The  total  weight  of  the 
rod  is  3  lbs.  and  its  cross-section  is  circular  and  of  diameter  2  inches.  If  it 

is  depressed  vertically  and  then  let  go  find  the  periodic  time  of  vibration. 

When  a  body  is  in  water  the  upthrust  on  it  is  equal  to  the  weight  of  the 
volume  of  water  displaced. 

6.  A  particle  of  mass  m  moves  in  a  straight  line  under  the  action  of  a  force, 
towards  a  point  O  in  the  line,  the  value  of  which,  at  a  distance  x  from  the 
point,  is  nifjix.    Determine  the  time  of  an  oscillation. 

Shew  that  the  potential  energy  when  the  particle  is  at  a  distance  x  from  O 

is  ̂nifjuc^. 

Shew  also  that  the  motion  of  a  simple  pendulum  making  small  oscillations 
approximates  to  the  same  type. 

7.  A  simple  pendulum,  of  length  3  feet,  oscillates  through  an  angle  of 
12  degrees  on  either  side  of  the  vertical.  Using  the  principle  of  conservation 
of  energy,  find  the  maximum  velocity.  Compare  this  with  the  maximum 
velocity  obtained  by  considering  the  motion  to  be  simple  harmonic. 

8.  A  thin  rod,  3  feet  long,  is  pivoted  at  one  end  and  oscillates  through  a 
small  angle  in  a  vertical  plane.  Find  the  periodic  time  of  oscillation,  and 

shew  that  it  will  be  the  same  if  the  rod  is  pivoted  at  a  point  one-third  the 
length  from  the  end  as  it  is  when  pivoted  about  the  end. 

9.  A  mass  of  5  lbs.  has  a  simple  harmonic  motion,  the  period  of  which  is 
^  second  and  the  amplitude  6  inches.  Draw  diagrams  to  stated  scales  shewing 

(i)  the  force  acting  on  the  mass  as  a  function  of  the  time,  (ii)  the  velocity  as 
a  function  of  the  displacement. 

10.  A  flywheel  is  hung  up  with  its  axis  vertical  by  two  long  ropes  parallel 
to  and  equidistant  from  its  axis  so  that  it  can  execute  torsional  oscillations. 
It  is  found  that  a  static  couple  of  50  lbs.  ft.  will  turn  it  through  an  angle  of 

one-tenth  of  a  radian,  and  that  if  it  be  turned  through  a  small  angle  and  then 
let  go  the  period  of  a  complete  oscillation  backwards  and  forwards  is  5  seconds. 
Calculate  how  much  energy  will  be  stored  in  this  flywheel  when  running 
200  revolutions  per  minute. 
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11.  A  mass  of  5  lbs.  is  suspended  by  a  spring,  and  when  at  rest,  just 

touches  the  platform  of  a  spring  balance  without  the  latter  taking  any  of  the 

weight.  The  spring  is  such  that  it  extends  1  inch  for  10  lbs.  and  the  platform 

of  the  spring  balance  is  depressed  1  inch  for  20  lbs.  If  the  mass  of  5  lbs.  is 

slowly  depressed  |  inch  and  then  let  go,  find  the  periodic  time  of  vibration. 

Find,  also,  the  maximum  height  the  mass  rises  and  the  maximum  velocity  it 
attains. 

12.  A  Tee  square,  of  the  dimensions  shewn  in  the  figure,  is  suspended 
at  A,  and  oscillates  through  a  small  angle  in  its  own 
plane.    The  horizontal  cross-piece  is  twice  as  thick  as 
the  vertical  piece.   Find  the  periodic  time  of  oscillation. 

13.  A  rectangular  bar  magnet,  weighing  0*2  lb.,  is 
6  inches  long  and  of  cross-section  ^  inch  by  J  inch. 
It  is  pivoted  in  a  horizontal  plane  so  that  it  is  free  to 
swing  about  a  vertical  axis  through  its  middle.  Find 
the  periodic  time  of  oscillation  in  a  place  where  the 

earth's  magnetic  field  has  a  horizontal  intensity  of 
0"19  dyne,  if  the  magnetic  moment  of  the  magnet  is 
400  dyne-cm.  units. 

14.  A  rotary  valve  for  an  engine  makes  500  com- 
plete oscillations  per  minute  about  a  horizontal  axis, 

the  total  angle  of  rotation  being  90  degrees.  The  motion 
is  obtained  from  a  rack  which  moves  with  a  simple 
harmonic  motion,   and   drives   a  pinion  of  effective 

diameter  1|  inches  keyed  to  the  valve  spindle.    If  the      K---  9"   >\ 
moment  of  inertia  of  the  valve,  spindle,  and  pinion  is      '         -i?-     1 1 1  ' 
30  lb. -inch  units,  find,  neglecting  friction,  the  maxi-  ^' 
mum  total  pressure  between  the  teeth  of  the  rack  and  the  pinion. 

15.  A  machine  is  carried  by,  and  in  the  middle  of,  two  girders,  built  in 
at  the  ends.  The  dead  weight  of  the  machine  causes  a  deflection  of  |  inch. 

Shew  that  if  the  girders  weigh  jijjth  of  that  of  the  engine,  the  frequency 
of  a  small  vertical  oscillation  will  be  between  252  and  265  vibrations  per 
minute. 

Assume  firstly,  that  all  the  weight  of  the  girders  is  at  the  centre,  and  secondly, 
that  the  weight  of  the  girders  may  be  neglected  in  comparison  with  the  weight 

of  the  machine.  * 

16.  The  stroke  of  an  engine  is  6  inches,  the  connecting  rod  10  inches,  and 
the  speed  of  the  crank  720  revolutions  per  minute.  The  line  of  stroke  passes 
through  the  axis  of  the  crank  shaft. 

A 

o- 

CO 

-%- 

2'!. 

1 

« 
cq 

1 

2"
 

\ 

1 

1 

V| 



186 ELEMENTARY  DYNAMICS 

Draw  the  velocity-space  curve  for  the  motion  of  the  piston,  and  from  this 
construct  the  acceleration-space  curve- 

On  the  same  diagram  shew  the  acceleration- space  curve,  assuming  the 
connecting  rod  infinitely  long. 

17.  A  uniform  rectangular  block  of  length  12  inches  and  of  height  6  inches 
is  suspended  in  a  horizontal  position  by 

two  vertical  strings  AB  and  C  D,  as  shewn    ///y 

in  the  figure.    The  centre  of  gravity  of  ̂ ^^^^ 
the  block  is  2  feet  below  thfi  points  of 
suspension.    Find  the  time  of  a  small 
oscillation  in  the  plane  of  the  strings. 

If  the  vertical  strings  are  replaced  by 
two  equal  strings  OB  and  OD,  the  centre 

of  gravity  remaining  at  the  same  dis- 
tance below  the  point  of  suspen8ion,what 

will  be  the* periodic  time  for  small  oscil- 
lations? 

18.  Shew  that  the  motion  of  the 

crosshead  of  an  engine  is  approximately 
simple  harmonic. 

Find  the  force  that  is  necessary  to 
start  the  reciprocating  parts  of  an  engine 
into  motion  at  the  beginning  of  each 
stroke,  when  the  engine  is  running  at 

120  revolutions  per  minute.    The  mass  ^^^'  ̂^-'• 
of  the  reciprocating  parts  is  1  ton,  the  stroke  is  5  feet  and  the  obliquity  of 
the  connecting  rod  may  be  neglected. 
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MISCELLANEOUS 

Transmission  of  power  by  belts 

Power  is  frequently  transmitted  from  an  engine  shaft  or  motor 

shaft  to  a  machine  by  means  of  a  belt  connecting  pulleys  on  the 
two  shafts  as  shewn  in  fig.  113.  When  the  machine  is  doing  work 
the  tension  in  the  two  sides  of  the  belt  will  be  different. 

Fig.  113. 

Let  Tj  =  the  tension  in  lbs.  wt.  in  the  tight  side  of  the  belt, 

Ts  =  the  tension  in  the  slack  side  of  the  belt, 

N  =  the  speed  in  revolutions  per  minute  of  the  machine 
shaft, 

R  =  the  radius  of  the  pulley  on  the  machine  shaft  in  feet. 

The  resultant  turning  moment  on  the  machine  shaft 

=  TiR  -  T2R 

=  (Ti  -  T2)  R  lbs.  ft. 

The  angle  turned  through  in  1  minute  =  27rN  radians. 

The  work  done  per  minute  =  (Tj  -  To)  R  x  27rN  ft. -lbs. 

'.  The  horse-power  transmitted  to  the  machine  =  -    ̂        ̂        . 
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Example  (1).  In  order  to  measure  the  horse-power  which  can 
he  given  out  hy  an  engine,  a  brake  is  arranged,  consisting  of  a  belt 
on  the  Jlyivheel  of  b  feet  diaineter,  as  shewn  in  fig.  114.  A  iveight 
of  50  lbs.  is  attached  to  one  side  of  the  belt  and  a  weight  of  20  lbs. 

to  the  other  side.  The  20  lbs.  weight  is  partly  supported  on  a  spring 

balance.  When  the  flywheel  is  running  at  1 50  revolutions  per  minute 

the  spring  balance  reads  9*2  lbs.  Find  the  horse-power  absorbed  by 
the  brake. 

50  lbs 

Fig.  114. 

We  have  Tj  =  50  lbs.  wt., 

and  Ta  =  (20  -  9-2)  =  10-8  lbs.  wt. 

The  resisting  moment  on  the  wheel 

=  (50- 10-8)  X  2-5  lbs.  ft. 

(50-10-8)x2-5x27rx  150 
.*.  The  horse-power 33,000 

39-2  X  2-5  X  6-28  X  150 

33,000 2-8. 
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Machines 

A  machine  is  an  instrument  for  converting  energy  into  useful 

work.  ]n  order  to  take  in  the  energy  supplied  the  receiving  end 

of  the  machine  will  require  a  definite  motion,  depending  on  the 

form  in  which  the  energy  is  supplied.  Also,  the  motion  of  the 
working  end  will  have  to  be  of  a  definite  kind,  depending  on  the 

nature  of  the  work  which  is  required  to  be  done. 

Take  the  case  of  a  steam  engine.  Here  the  energy  is  supplied 

in  the  form  of  the  pressure  of  the  steam.  This  acts  on  a  piston, 

and  does  work  by  moving  it  along  a  straight  path.  The  receiving 
end  has  therefore  a  reciprocating  motion.  The  working  end,  on 
the  other  hand,  is  required  to  rotate,  and  the  force  of  the  steam 

on  the  piston  has  to  produce  a  couple  causing  rotation  of  the 
crank  shaft  against  the  resisting  torque. 

Fig.  115. 

If  we  like,  we  can  consider  the  torque  on  the  crank  shaft 

produced  by  a  force  R  acting  on  the  crank  pin  at  right  angles  to 

the  crank.  In  this  case  the  crank  pin  becomes  the  working  end 
and  the  piston  becomes  the  receiving  end. 

Let  V  =  the  velocity  of  the  piston  or  the  crosshead 

and      V  =  „  „         crank  pin. 

The  velocity  ratio  of  the  machine 

_  The  velocity  of  the  receiving  end 
The  velocity  of  the  working  end 

_V 

V  
' 
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If  we  may  neglect  friction  and  also  the  change  in  kinetic  and 
potential  energy  of  the  moving  points,  then  we  must  have  for  a 
definite  interval  of  time^ 

The  work  put  in  at  the  receiving  end 

=  the  work  got  out  at  the  working  end. 

Taking  a  unit  interval  of  time  we  have, 

The  power  supplied  at  the  receiving  end 

=  the  power  given  out  at  the  working  end. 

If  E  =  the  force  exerted  at  the  receiving  end 

and   R  =        „         overcome  at  the  working  end, 

E.V^R.-y 

R      V 
or  —  =  -  , 

E      v' 
i.e.  t\\Q  force  ratio  is  inversely  proportional  to  the  velocity  ratio. 

Example  (2).    On  p.  50  we  found,  for  the  position  of  the  crank 
V     42 

shewn,  the  value  of  -  =  ̂   .    Suppose  the  steam  pressure  =  80  lbs, 

per  sq.  inch,  and  the  diameter  of  the  pisto7i  =  10  inches.    Find  the 
crank  effort,  i.e.  the  tangential  force  on  the  crank  pin. 

The  total  pressure  (E)  =  257r  x  80 
=  6280  lbs.  wt. 

V 
The  crank  effort  (R)  =  -  x  E 

=  11  X  6280 
=  4050  lbs.  wt. 

Friction.    If  we  consider  friction  then  there  will  be  some  energy 
R  V 

wasted  in  heat,  and  the  ratio  of  —  will  no  longer  be  equal  to  - . 
E  ^  ^  V 

The  ratio  -  =  — =7^; — -, —  is  called  the  mechanical  advantage  of E  Effort 
a  machine. 
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^,  T      .     7    /r.  •  f.  1  .         Power  given  out 
Ihe  mechanical  efficiency  of  a  machine  =  ̂ pi   -.   -. — *^  ^  Fower  given  in 

_  Rv 

~EV 

Mechanical  advantage 

Velocity  ratio 

Example  (3).  Fig.  \\^{a)onp.  192  shews diagrammatically  the 

meclianism  of  a  drawing  press.  ABC  is  a  hell-crank  lever  pivoted 
at  B.  Tfie  end  C  is  connected  hy  the  link  CD  to  the  piece  D,  which 

is  constrained  to  move  in  direction  BD.  By  dratving  velocity  tri- 
angles, find  the  ratio  of  the  velocity  of  f<  to  the  velocity  of  D. 

Neglecting  friction,  wJiat  vertical  force  P  applied  at  A  is  required 
to  produce  a  vertical  push  of  1  ton  on  D? 

The  bell-crank  lever  ABC  is  pivoted  at  B,  and  therefore  the 
velocity  of  A  :  the  velocity  of  C  as  AB  :  BC. 

In  fig.  116  (6),  draw  oa  perpendicular  to  AB,  and  equal  to  AB, 

to  represent  the  velocity  of  A.  Draw  oc  perpendicular  to  BC,  and 
equal  to  BC,  to  represent  the  velocity  of  C. 

The  relative  velocity  of  D  to  C  must  be  perpendicular  to  CD, 
and  the  velocity  of  D  is  along  BD. 

Draw  cd  perpendicular  to  CD,  and  draw  od  parallel  to  BD. 

The  velocity  of  D  equals  the  vector  sum  of  the  velocity  of  C  and 
the  relative  velocity  of  D  to  C. 

ocd  is  a  triangle  of  velocities. 

.*.   od  represents  the  velocity  of   D,  to  the  same  scale  as  oa 
represents  the  velocity  of  A. 

Velocity  of  A      oa 

Velocity  of  D      od 

=  ̂ TKc.  (by  measurement) 
=  1-2. 

Now  P  acts  vertically.    Draw  op  vertical,  and  draw  ap  perpen- 
dicular to  op. 
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Then   op   represents    the   component   of   A's   velocity   in    the 
direction  of  the  force  P. 

Fixed  centre 

Fig.  116. 

Employing  the  principle,  work  put  in  =  work  got  out,  we  have 
p  X  op  =  F  X  oc?, 

where  F  is  the  force  required  at  D. 

op 

od 0-98 

0^ =  1-18  
tons. 

=  1    X 
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Example  (4).     The  mechanical  efficiency  of  a  certain  type  of 

tackle  may  be  taken  equal  to  I  =   j ,  where  n  =  the  total  number 

of  sheaves  round  which  the  rope  is  wrapped. 

A  runner  tackle^  in  which  the  m,oving  block  has  3  sheaves  and  the 

fixed  block  2  slieaves,  is  to  be  used  to  overcoine  a  resistance  of  5  tons. 

What  will  be  the  pull  in  the  running  end  of  the  rope,  and  the 
mechanical  advantage  of  the  tackle  ? 

.^        .   >P 5  tons 

..      .   ̂   Fixed Moving 

Fig.  117. 

The  sheaves  are  really  all  the  same  size  and  not  as  shewn  in 

fig.  117,  and  the  portions  of  the  rope  may  be  assumed  parallel. 

From  the  figure,  we  see  that  if  the  moving  block  shifts  1  foot 
there  will  be  a  motion  of  the  running  end  equal  to  6  feet. 

.'.  The  velocity  ratio  =  6. 
Let  P  =  the  pull  of  the  running  end,  in  tons  wt. 

The  mechanical  efficiency  =  .^^ — -.   — ^ 
Work  put  in 
5 

~Px6' 

or  P  =  fo 

Px6      7  +  5' 
6.0 42 

=  ̂   tons  wt. 

The  mechanical  advantage 
5 

"  
P 

—  35 

-TT7 

-3-5. 

L.  E.  D.  13 
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Example  (5).  In  a  steam  tractor  the  motion  is  transmitted  from 

the  crank  shaft  A  through  two  parallel  shafts  B  and  C.  A  wheel  of 

22  teeth  on  A  gears  with  a  wheel  of  21  teeth  on  B.  Compound  with 

this  wheel  is  a  wheel  of  17  teeth  gearing  with  a  wheel  of  4:4:  teeth 

keyed  on  shaft  C.  Keyed  also  on  C  is  a  wheel  of  \2  teeth  gearing 
with  a  wheel  of  5Q  teeth  fixed  to  the  road  wheel. 

Find  the  velocity  o'atio  of  the  gear,  and,  neglecting  friction,  find 
the  coujyle  required  on  the  crank  shaft  to  produce  a  total  tractive 

force  of  1000  lbs.,  the  diameter  of  the  road  wheels  being  7  feet. 

22 

:^ 

21 

,^ 

12 

56 

y^ 

A 

17 

B 

44 

C 

Road  wheel 

Fig.  118. 

The  arrangement  of  the  gear  is  shewn  diagrammatically  in 

fig.  118, 
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For  one  revolution  of  the  crank  shaft  A  we  have 

Shaft  B  makes  |f  revolutions, 

„      C      „       If  ̂  ii  revolutions, 

»       D     „       If  xjjx  If  revolutions. 
r^,        ,     .  '      n  .^  Speed  of  A 

/.  The  velocity  ratio  oi  the  gear  =  ,5^^ — -^— ̂  — 

21  X  44x56 ~22xl7x  12 

=  11-53. 

Let  T  =  the  couple  on  the  crank  shaft  in  lbs.  ft. 

P  =  the  tractive  force  in  lbs.,  at  the  points  of  contact  of  the 
two  road  wheels. 

The  couple  on  the  road  wheels  shaft  D 

=  P  X  I  lbs.  ft. 

Neglecting  friction,  we  must  have  the  work  put  into  the  crank 

shaft  in  any  time  =  the  work  given  out  by  the  road  wheels  in  the 
same  time. 

.-.  p  x|--Tx  11-53. 

Putting  P- 1000  lbs., 
100x3 

11^53" 

we  get  T  =  15^^' ^303  lbs.  ft. 

Relative  Momentum  and  Relative  Kinetic  Energy 

In  dealing  with  motion  we  pointed  out  that  we  really  do  not 
know  anything  about  absolute  motion,  and  that  all  the  motions 

we  deal  with  are  relative  motions.  In  the  same  way,  when  we 
talk  or  write  about  momentum,  and  kinetic  energy,  since  these 

involve  velocity  and  speed,  we  are  really  implying  relative  mo- 
mentum, and  relative  kinetic  energy. 

13—2 
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MomentuTn.  Suppose  we  are  determining  the  force  acting  on 

a  body  by  considering  the  time-rate  of  change  of  momentum.  If 
the  momentum  is  changing  uniformly  with  the  time,  we  have 

m{y  —  u) 
^^         t         ' 

where  v  and  u  are  the  final  and  initial  velocities  of  the  mass  m, 

measured  relatively  to  some  body  of  reference. 

Suppose  the  body  of  reference  has  itself  a  constant  velocity  V 
the  s{ 

mentum 
in  the  same  direction  as  u  and  v,  then  the  real  change  of  mo- 

=  m  (v  +  y)  -  m  (u  +  W) 

=  m{y-  u). 

Now  we  may  assume  that  the  time  is  the  same  whatever  is  our 

body  of  reference, 
m  (v  —  u)         -    „ 

.*.  F  =  — ^^    ,  as  before. t 

Kinetic  Energy.  Suppose  we  are  determining  the  force  acting 

on  a  body  by  considering  the  space-rate  of  change  of  kinetic 
energy.  Again  taking  the  force  constant,  relative  to  our  body  of 
reference,  we  have 

where  s  is  the  distance  moved  relative  to  the  body  of  reference. 

If  the  body  of  reference  has  a  constant  velocity  V,  then  the 
real  change  of  kinetic  energy 

2  2 

+  mV  {v  —  u). 
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Let  s'  =  the  total  distance  moved  during  this  change. 

Then  Fs'  =  —^   '  ̂m{y-  u)  V. 

Now 

I.e. 

s  =s  +  yt,  and    F  =  -^^   ^ . t 

.'.   Fs+F  .Wt  = — ^^   ^  +  Fi5 .  V, 

m  (v^  —  u^)         ,    „ 
F  =  — ^-^r-   ' ,  as  beiore. 

Hence  we  may  use  relative  kinetic  energy  if  at  the  same  time 
we  use  the  relative  displacement. 

As  an  example,  consider  the  energy  required  to  accelerate  or 

retard  the  piston  of  a  locomotive  which  is  travelling  at  any  given 

speed  relative  to  the  earth.  In  estimating  this,  we  are  not  con- 
cerned with  the  speed  of  the  locomotive,  but  merely  with  the 

speed  of  the  piston  relative  to  the  cylinder,  and  the  distance 
moved  by  the  piston  relative  to  the  cylinder  while  this  change  of 

speed  has  occurred. 

In  the  same  way,  in  order  to  find  the  total  work  done  by  the 

steam,  we  use  the  force-space  curve,  the  force  being  the  total 

pressure  of  the  steam  on  the  piston  and  the  space  being  the  rela- 
tive displacement  of  the  piston  in  its  cylinder. 

Indicated  Horse-Power 

The  indicated  liorse-power  (i.h.p.)  of  an  engine  is  the  horse- 
power supplied  to  the  engine  by  the  working  substance,  e.g.  in  a 

steam  engine,  the  horse-power  supplied  by  the  steam  as  it  acts 
on  the  piston.  The  term  indicated  is  used  since  the  i.h.p.  is 

usually  obtained  by  means  of  an  Indicator.  This  is  a  small  in- 

strument which  autographically  records  the  force-space  curve  at 
the  receiving  end  of  the  engine.     An  indicator  diagram  for  a 
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steam  engine  in  which  the  steam  acts  only  on  one  side  of  the 
piston  is  shewn  in  fig.  119. 

ahc  represents  the  pressure  of  the  steam  as  the  piston  is  moving 
in  towards  the  crank  shaft,  i.e.  during  the  forward  stroke,  and  cda 

represents  the  pressure  during  the  return  stroke. 

Stroke 

Fig.  119. 

Let  Py  =  the  mean  pressure  in  lbs.   per  sq.   inch  during  the 
forward  stroke. 

Pj,  =:  the  mean  pressure  in  lbs.  per  sq.  inch  during  the  re- 
turn stroke. 

A  =  the  area  of  the  piston  in  sq.  inches. 

L  =  the  length  of  the  stroke  in  feet. 

N  =  the  speed  of  the  engine  in  revolutions  per  minute. 

The  work  done  by  the  steam  during  the  forward  stroke 

=  P^..A.  L  ft.-lbs. 

The  work  done  by  the  steam  during  the  return  stroke 

=  -  P,, .  A .  L  ft.-lbs. 
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The  negative  sign  is  used  since  the  engine  has  to  do  work  in 

pushing  the  steam  out  of  the  cylinder. 

.*.  The  work  done  by  the  steam  per  revolution 

=  (P^-P,).AL 

=  P  .  A  .  L  ft. -lbs., 

where  P  is  the  mean  effective  pressure  given  by  the  diagram  abcda. 

This  is  obtained  from  the  mean  distance  between  tl^p  curves 

abc  and  cda,  or  the  area  abcda  divided  by  the  length  of  the  diagram. 

The  work  done  per  minute  =  P  .  A  .  L .  N  ft.-lbs. 
P  .  L.A.N 

.'.  The  indicated  horse-power  =     '     '     '     . 

The  brake  horse-power  (b.h.p.)  or  the  horse-power  which  is  given 
out  by  the.  engine  may  be  obtained  by  using  a  brake  such  as  is 
shewn  in  fig.  114,  p.  188. 

The  difference  between  the  indicated  horse-power  and  the  brake 

horse-power  represents  the  horse-power  which  is  wasted  in  friction 
in  the  engine  itself. 

The  mechanical  efficiency 

Brake  horse-power 

Indicated  horse-power ' 

Example  (6).  The  driving  wheels  of  a  two-cylinder  locomotive 
are  ̂   feet  in  diawxter.  The  mean  pressure  of  the  steam,  in  each 

cylinder  is  60  lbs.  per  sq.  inch.  The  diameter  of  the  cylinders  is 

20  inches^  and  the  stroke  22  inches.  Find  the  indicated  horse-power 
if  the  speed  of  the  locomotive  is  20  miles  per  hour. 

Find  also  the  draw-bar  pull  produced,  if  \2'5  per  cent,  of  the 
power  supplied  is  wasted  in  friction. 

The  speed  of  the  driving  wheels  and  crank  shaft 

_  20  X  5280 
60  X  TT  X   6 

=  93*5  revolutions  per  minute. 
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i.H.p.  for  one  end  of  one  cylinder 

_  60  X  TT  X  10^  X  22  X  93-5 ~  33,000  X  12 =  98. 

.-.  Total  I.H.P.  =.4  X  98 -392. 

The  horse-power  available  for  draw-bar  pull 
-0-875x392 
=  343. 

If  P  —  the  draw-bar  pull  in  tons 

The  work  done  per  revolution 

—  P  X  TT  X  6  ft.-tons. 

The  useful  energy  supplied  per  revolution 
4x60x7rxl00x22 

=  ■   2240x12    ̂   ̂'^^^  ̂^-*^^^' 
Equating  these,  we  get 

240  X  TT  X  100  X  22  X  0-875 
2240  X  12x7rx6 

=  2-86  tons. 

Mechanical  Losses  in  a  Steam  Tractor 

As  an  illustration  of  the  method  of  applying  the  principle  of 

the  conservation  of  energy  to  a  practical  problem,  we  will  briefly 
discuss  an  actual  test  of  a  steam  tractor  which  was  made  in  order 

to  determine  the  mechanical  efficiency,  and  to  discover  where  the 
losses  of  power  occurred. 

The  tractor  is  driven  by  a  steam  engine,  fitted  with  a  flj^wheel, 
and  the  motion  is  transmitted  through  gear  wheels  from  the  crank 

shaft  to  the  driving  wheels,  as  described  in  example  (5),  p.  194. 
A  clutch  is  fitted  between  the  crank  shaft  and  the  gear. 
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Tests  were  made  while  the  tractor  was  drawing  a  train  of  loaded 

wagons  along  a  level  road.  The  power  put  in  was  measured  by 

taking  indicator  diagrams  from  the  cylinders.  The  power  trans- 
mitted to  the  wagons  was  measured  by  the  pull  in  the  spring 

coupling  between  the  tractor  and  the  wagons. 

For  this  purpose  an  apparatus  was  arranged  to  autograph ically 

draw  a  pull-distance  curve,  and  at  the  same  time  equal  intervals 
of  time  were  recorded  on  the  diagram. 

The  following  are  the  figures  for  one  test : 

Indicated  horse-power  =::  19*1. 
Speed  of  crank  shaft  =  236  revolutions  per  minute. 

Space-average  of  pull  on  wagons  =  582  lbs. 

Speed  of  tractor  from  diagram  =  446  feet  per  minute. 

Velocity  ratio  of  gear  =  11 'SS. 
Diameter  of  driving  wheels  =  7  feet. 

Horse-power  transmitted  to  the  wagons 

_  582  X  446 ~    33,000 

=  7-9. 

.'.  Overall  mechanical  efficiency 

_  7-9 

~19-1
 

=  41*3  per  cent. 

Horse-power  lost  in  the  tractor 

=  191 -7-9 

=  11-2. 

To  find  the  slip  of  the  driving  wheels  on  the  road,  we  have, 
236 

Speed  of  the  driving  wheels  =  Z"        revolutions  per  minute 

=  20-4  revolutions  per  minute. 
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Speed  of  the  circumference  of  driving  wheels 

=  20*4  X  7  X  TT  feet  per  minute 

=  450  feet  per  minute. 

Speed  of  the  tractor  =  446  feet  per  minute. 

.*.  Percentage  slip  of  the  driving  wheels 
450-446 

=  -^50—^1^^ =  0-9  per  cent. 

The  total  mechanical  losses  in  the  tractor  consist  of  the  following 
items  : 

(1}  Engine  friction  loss. 

(2)  Gear  friction  loss. 

(3)  Friction  loss  of  the  driving  wheels  on  the  road  and  other 

resistances  to  motion  (traction  loss). 

(1)  In  order  to  determine  the  engine  friction  the  clutch  was 

disengaged  and  an  absorption  brake  fitted  on  the  flywheel.  A 

number  of  tests  of  the  indicated  horse-power  and  the  flywheel 

horse-power  were  taken. 

These  tests  shewed  that  the  power  lost  in  engine  friction  was 

practically  constant  and  equal  to  3*3  horse-power. 

(2)  To  determine  the  gear  loss  the  total  horse-power  lost  be- 
tween the  cylinders  and  the  driving  wheels  was  estimated.  This 

was  eftected  by  jacking  up  the  tractor,  and  fitting  a  brake-ring 
and  an  absorption  brake  on  one  of  the  driving  wheels. 

From  a  series  of  tests  it  was  found  that  the  brake  horse-power 

was  related  to  the  indicated  horse-power  as  follows  : 

Brake  horse-power  ==0-925  (indicated  horse-power)  -  3*06. 

For  indicated  horse-power  =  19-1,  we  have, 

Brake  horse-power  =  0-925  x  19-1  -  3-06 

=  17-66 -3-06 
=  14-6. 
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The  horse-power  transmitted  to  the  gear 

=  191- 3-3 
=  15-8. 

The  horse-power  lost  in  friction  of  the  gear 

=  15-8 -14-6 
=  1-2. 

14-6 The  efficiency  of  the  gearing  =  r-— ^ 

=  92*5  per  cent. 

(3)    The  horse-power  given  to  the  wagons 
=  7-9. 

.'.  Horse-power  wasted  in  tractor  road-friction  and  resistance 

=  14-6-7-9 
=  6-7. 

Summary  of  Losses 

Input. 19-1  H.P. 

Output. Engine  Friction 
3-3  H.P. 

Gear  Friction 
1-2  H.P. 

Traction  Loss 
6-7  H.P. 

Transmitted  to  Wagons 
7-9  H.P. 

Total 19-1   H.P. 

Pelton  Water  Wheel 

In  a  Pelton  Wheel  a  number  of  buckets  are  arranged  round  the 

rim  of  a  disc,  and  a  jet  of  water,  moving  with  a  high  velocity, 
impinges  tangentially  on  the  buckets.  The  reaction  to  the  tan- 

gential pressure  required  to  change  the  momentum  of  the  water, 
provides  the  turning  moment  on  the  wheel. 
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A  diagrammatic  sketch  of  the  wheel  is  shewn  in  fig.  120,  and 
an  enlarged  sectional  plan  of  one  bucket  is  shewn  also  in  the  figure. 

Let  a  =  the  area  of  the  nozzle  in  sq.  feet. 

u  =  linear  speed  of  the  buckets  in  feet  per  second. 

V  =  the  velocity  of  the  water  as  it  issues  from  the  nozzle  in 
feet  per  second. 

p  =  the  density  of  the  water  in  lbs.  per  cubic  foot. 

Fig.  120. 

The  tangential  pressure  on  the  wheel 

=  the  change  of  momentum  of  the  water  per  second 

=  the  mass  of  water  impinging  per  second  x  the  change  of  velocity. 

The  velocity  of  the  water,  relative  to  the  bucket,  just  before  it 

impinges  is  {y  -  u). 

In  the  absence  of  friction,  this  will  also  be  the  magnitude  of 

the  relative  velocity  of  water  and  bucket  at  any  point  of  the 

bucket.  The  direction  will  be  changed  by  the  normal  pressure 
but  this  cannot  affect  the  relative  tangential  velocity. 

The  final  velocity  of  the  water  relative  to  the  bucket  in  the 

direction  of  the  jet  =  -  {v  —  u)  cos  0. 
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.-.  The  final  velocity  of  the  water  relative  to  the  fixed  nozzle 

=  —  {v-u)  cos  6  +  u 

=  u  (1  +  cos  0)  —  V. 

.*.  The  change  of  velocity  in  the  direction  of  the  jet 

=  v  —  {w  (1  +  cos  0)  -  v] 

=  2v-u(l  +cos6). 

In  practice  6  is  made  very  small,  just  sufficient  to  allow  the 
water  leaving  to  clear  the  wheel.    Take  ̂   =  0. . 

The  change  of  velocity  in  thfe  direction  of  the  jet  =  2  (v  -  u). 

The  quantity  of  water  impinging  on  one  bucket  per  second 

depends  upon  the  relative  velocity,  and  =  pa(v  —  u)  lbs. 

With  a  number  of  buckets,  neglecting  splash,  we  may  assume 
that  all  the  water  impinges  on  the  wheel. 

.-.  The  mass  of  water  impinging  per  second 

=  pav  lbs. 

The  tangential  pressure  on  the  wheel 

=  pav  x2{v  -u)  abs.  units 
Jpav{v-u)^^^^^^^ 

9 

The  work  done  on  the  wheel  per  second 

=  -^ — ^   ^  X  u  ft.-lbs. 
9 

The  energy  supplied  to  the  wheel  per  second 

1        ̂  

^9 

.^Theeffidency  =  2^1i!±.-Iib 

pair 
~2~ 

4:  (v  —  u)  u 
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The  kinetic  energy  carried  away  by  the  water  per  second 

=  ̂-^^fc^ft.-lbs. 

J.i  V  =  2u,  i.e.  the  velocity  of  the  bucket  equals  one-half  the 
velocity  of  the  jet,  the  kinetic  energy  carried  away  equals  zero, 
and  the  efficiency  is  unity. 

Taking  this  condition  we  get 

The  maximum  horse-power  of  the  wheel 

2g X  550 
• 

Total  Kinetic  Energy  of  a  Body  moving  in  a  Plane 

Let  the  body  shewn  in  fig.  121  have  any  motion  whatever  in 
the  plane  of  the  paper. 

Let  G  be  the  centre  of  gravity,  and  let  it  have  a  velocity  v  at 
the  instant  considered. 

Consider  the  velocity  (u)  of  any  point  A. 

The  velocity  of  A  =  the  velocity  of  G  +  the  relative 
velocity  of  A  to  G  (vector  sum). 

Fig.  121. 
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Let  o>  =  the  angular  velocity  of  the  body  at  the  instant  con- 
sidered, and  r  =  the  distance  AG. 

Then  the  relative  velocity  of  A  to  G  =  wr,  and  is  perpendicular 
to  AG. 

Draw  AB  perpendicular  to  G A  to  represent  tar,  and  draw  BO  to 
represent  v. 

Then  AC  will  represent  u,  and  we  have 

AC  =  AB  +  BC, 

or  u^  =  (oV^  +  v^+  2(or  .  v .  cos  <j}. 

Draw  AN  perpendicular  to  the  direction  of  motion  of  G.    Then 

AN  is  perpendicular  to  BC,  and  AB  is  perpendicular  to  AG. 

.-.  GAN  =  <^ 

and  rcos</)  =  AN. 

If  Sm  is  the  mass  of  a  particle  of  the  body  at  A,  the  kinetic 
energy  of  it 

=  I  Sm  .  u^. 
For  the  whole  body  we  get 

The  kinetic  energy  =  ̂   ̂ 8m  .u^ 

=  ̂ i8m  (o)V^  +  v^+  2wv  .  AN) 

=  ̂  :S  r^Sr/i  +  ~'$Sm  +  2o>v  ̂   Sm  .  AN. 

^T^Sm       =  the  moment  of  inertia  (I)  of  the  body  about  an  axis 
through  G. 

S  Sm  =  the  total  mass  M. 

^Sm  .  AH  -  the  moment  of  each  particle  about  the  axis  GN 

=  zero,  since  G  is  the  centre  of  gravity. 

.'.  The  kinetic  energy  of  the  body 
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We  may  express  this  in  words  thus  : 

The  total  kinetic  energy  of  a  body  moving  in  a  plane  equals 

the  kinetic  energy  of  the  whole  mass  moving  with  the  velocity  of 

the  centre  of  gravity  plus  the  kinetic  energy  due  to  rotation  about 
the  centre  of  gravity. 

Example  (7).  In  the  arrangement  shewit  in  fig.  122,  each  of 
the  pulleys  has  a  mass  w,  a  radius  r,  and  a 

radius  of  gyration  k.  If  when  left  to  itself 
the  mass  M  descends  and  raises  mass  m,  find 

the  velocity  of  M  when  it  has  fallen  a  dis- 
tance hfrom  rest. 

Using  the  principle  of  the  conservation 

of  energy  we  may  write, 

the  loss  of  potential  energy  =  the  gain 
of  kinetic  energy. 

Let  17= the  velocity  of  M  after  descending 
a  distance  h. 

The  mass  m  and  the  pulley  B  will  have 

ascended  a  distance  ̂   ,    and   their   linear 

velocity  will  be  ̂  . 

The  angular  velocity  of  pulley  A  will  be 

Fig.  122. 
V 
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Example  (8).  A  wagon  of  total  mass  M  ha^  four  wheels^  each 
of  mass  m,  radius  r,  and  radius  of  gyration  k.  Shew  that  the  effect 
of  the  rotation  of  the  wheels  is  the  same  as  that  of  an  increase  of 

mass  equal  to  — ^  . 

Let  the  speed  of  the  wagon  be  increased  from  u  to  v  hy  the 

application  of  a  constant  accelerating  force  F  in  the  direction  of 
motion. 

We  may  equate  the  work  done  by  this  force  to  the  gain  of 
kinetic  energy. 

Initially. 

The  kinetic  energy  of  the  wagon  without  the  wheels 

=  J  (M  -  4m)  u\ 

The  kinetic  energy  of  the  wheels  =  4  1 1  mu^  +  J  m^  .  —  j- ,  si 

since 

u 
the  angular  velocity  of  the  wheels  is  - . 

:.  The  total  kinetic  energy  =  ̂ Mu^-¥  2m  — .  u"^ 

r" 

Finally. 

The  total  kinetic  energy  =  J  (  M  +  4m  -^ )  v^. 

If  s  is  the  distance,  and  t  the  time  for  the  change  of  velocity, 

f.s  =  i(m  +  ̂)(«^-«^)   (1). 
With  the  wheels  locked  we  should  have 

F.s=::iM(2;2-w2), 
assuming  the  same  accelerating  force  to  act. 

.*.  The  rotational  inertia  of  the  wheel  is  equivalent  to  an  ad- 

ditional mass  of  — r— . 
IT 

L.  E.  D.  14 
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We  may  find  the  acceleration  tlius  : 

rrora(l).        f.s^^^f 

But V  +  u .  t  =  s, 

M  H   — )  ^  acceleration. 

The  acceleration 

M  + 

^vfik^
 ' J      Examples.   Chapter  IX 

1.  It  is  required  to  transmit  50  horse-power  from  a  pulley,  36  inches 
in  diameter,  running  at  250  revolutions  per 
minute.  The  belt  is  I  inch  thick,  and  the  per- 

missible stress  in  the  material  is  600  lbs.  per 
square  inch.  Find  the  proper  width  of  the  belt, 
on  the  assumption  that  the  tension  in  the  tight 
portion  of  the  belt  is  twice  that  in  the  slack 

portion. 

2.  Shew  that  the  horse-power  delivered  by  a 
belt  to  a  pulley  of  diameter  D  feet,  running  at 
N  revolutions  per  minute,  is  given  by 

(Ti-T2)D.N 
10500 

where  Tj  and  T2  are  the  tensions  in  lbs.  in  the 
two  sides  of  the  belt. 

Power  is  transmitted  from  a  pulley  A  to  a 
pulley  B,  and  in  order  to  measure  the  power  the 
belt  is  arranged  as  shewn  in  fig.  123. 

If  the  weight  W  attached  to  the  light  jockey 
pulley  P  is   150  lbs.    and  the  spring  balance 
attached  to  the  light  jockey  pulley  Q  reads 

70  lbs. ,  find  the  horse-power  transmitted  when  the  speed  of  B  is  200  revolu 
tions  per  minute  and  its  diameter  is  9  inches. 

Spring 

balance 
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3.  A  flywheel,  of  mass  10  tons,  is  rotating  40  times  per  minute  and  the 
mean  diameter  of  its  rim  is  19  feet.  Express  its  energy  as  the  fraction  of 

a  horse-power-hour. 

Find  the  difference  of  the  tensions  in  belting  passing  over  the  flywheel 
which  would  reduce  it  to  rest  in  10  minutes,  taking  the  outer  diameter  of 
the  flywheel  as  20  feet. 

4.  Fig.  124  shews  an  absorption  brake  arranged  for  measuring  the  horse- 
power given  out  by  a  water  turbine.  When  the  brake  was  arranged  on  a 

pulley,  which  was  quite  free  to  rotate  without  friction,  the  spring  balance 
read  4  lbs.  If  the  brake  pulley  of  the  turbine  is  rotating  at  500  revolutions 

per  minute,  and  the  spring  balance  reads  36  lbs.  find  the  horse-power  given 
out. 

////////////// 
Fig.  124. 

5.  The  table  of  a  planing  machine  has  a  rack  fixed  to  its  underside,  and 
takes  its  motion,  along  the  bed  of  the  machine,  from  a  pinion  which  gears 
with  the  rack.  The  pinion  has  14  teeth  of  1|  inch  circumferential  pitch,  and 
to  its  axle  is  keyed  a  wheel  of  68  teeth,  which  is  driven  from  the  pulley  shaft 
through  a  wheel  of  17  teeth.  If  the  pulley  shaft  is  running  at  a  speed  of 
90  revolutions  per  minute,  what  is  the  linear  speed  of  the  table  in  feet  per 
minute? 

The  table  weighs  1000  lbs.,  and  the  coefficient  of  friction  between  the  table 

and  the  bed  is  0*12.  If  no  power  is  lost  in  the  gear,  what  torque  must  be 
applied  to  the  pulley  shaft  in  order  to  move  the  table  along  the  bed? 

14—2 
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6.  The  moving  block  of  a  tackle  has  two  sheaves  and  the  fixed  block  three 

sheaves.   For  raising  a  load  the  relation  of  the  effort  P  to  the  load  W  is  given 
W  /       w\ 

by  P  =  Q  (  1  +  o ) »  where  Q  is  the  velocity  ratio,  and  n  is  the  number  of 

sheaves  round  which  the  rope  is  wrapped. 

Sketch  the  arrangement,  and  find  the  ejB&ciency  and  the  effort,  when  a  load 
of  10  tons  is  raised. 

What  value  of  P  would  you  expect  to  be  required  to  slowly  lower  10  tons? 

7.  The  sketch,  fig.  125,  shews  the  mechanism  of  a  coining  press,  in  which 
pressure  is  exerted  on  the  piece  D  by  a  pull 
at  the  end  A  of  a  bell-crank  lever  ABC 

pivoted  at  B.  The  direction  of  the  pull  is 
perpendicular  to  BD,  and  D  is  constrained  to 
move  along  BD. 

Determine,  graphically,  the  velocity  ratio 
of  D  to  A.  Neglecting  friction,  what  pull  is 
required  at  A  to  move  D  against  a  thrust  of 
2  tons? 

[Prick  the  figure  through  to  your  paper.  ] 

8.  A  winch  has  four  parallel  shafts  A,  B, 
C  and  D.  On  shaft  A  there  is  a  pinion  with 
11  teeth,  which  meshes  with  a  wheel  with  39 
teeth  on  shaft  B.  Compound  with  this  wheel, 
a  pinion  of  12  teeth  meshes  with  a  wheel  with 
50  teeth  on  shaft  C.  This  shaft  has  a  pinion 

with  11  teeth  meshing  with  a  wheel  with  70 
teeth  on  the  drum  shaft  D.  The  external 

diameter  of  the  drum  is  10  inches,  and 

the  winding  rope  has  a  circumference  of 

2^  inches. 

If  the  pull  in  the  rope  being  wound  on  the 

drum  is  5  tons,  and  the   efficiency  of  the  ^.     ̂ ^k 
machine  is  75  per  cent, ,  what  tangential  force 

will  have  to  be  applied  to  a  handle  of  15  inches'  effective  radius  (i)  if  it  is 
fixed  on  shaft  A,  (ii)  if  it  is  fixed  on  shaft  B? 

9.  A  flywheel,  6  feet  in  diameter  and  weighing  half  a  ton,  is  supported 
midway  between  two  bearings  on  a  shaft  of  4  inches  diameter.  Power  is 
delivered  to  the  shaft  at  the  rate  of  25  horse-power,  and  drives  the  flywheel 
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at  150  revolutions  per  minute  against  the  friction  of  a  strap  which  passes 

over  the  upper  half  of  the  circumference,  and  carries  300  lbs.  at  one  end  and 

25  lbs.  at  the  other.  Find  how  much  of  the  power  is  absorbed  by  the  friction 

of  the  strap,  and  how  much  by  the  friction  of  the  bearings.  Find  also  the 

total  thrust,  and  the  resultant  frictional  force,  on  each  bearing. 

lO.  Define  the  terms  velocity  ratio,  mechanical  advantage,  efficiency,  and 
shew  that  the  efficiency  is  equal  to  the  mechanical  advantage  divided  by  the 
velocity  ratio. 

In  a  test  of  a  crane  with  a  velocity  ratio  of  280  the  following  values  of  load 
and  effort  were  observed: 

Load  in  tons 1 2 3 4 5 6 

Efforts  in  lbs. 31 
49 

67-5 

86 

104-5 

123 

Plot  the  values  given  and  obtain  the  relation  between  load  and  effort, 
also  a  curve  shewing  the  efficiency  for  the  above  loads. 

Plot 

11.  Shew  how  to  find  the  crank  effort  in  a  single  cylinder  engine  for  any 

given  crosshead  thrust.  The  crank  of  an  engine  is  8  inches,  the  connecting 
rod  30  inches;  the  crosshead  thrusts  at  quarter  stroke,  at  half  stroke,  and  at 

three-quarter  stroke  are  4000,  2500,  and  600  lbs.  wt.  respectively.  Find  the 
corresponding  turning  moments  on  the  crank. 

12.  An  electric  motor  has  keyed  to  its  spindle  a  wheel  A  of  14  teeth  which 

gears  with  a  wheel  B  of  70  teeth.  Compound  with  B  is  a  wheel  C  of  13  teeth 
which  gears  with  a  wheel  D  of  48  teeth.  Compound  with  D  is  a  wheel  E  of 
23  teeth  which  gears  with  a  wheel  F  of  54  teeth.  Wheel  F  is  keyed  to  the 
axle  of  the  chain  barrel  of  a  crane,  the  effective  diameter  of  which  is  15  inches. 
Find  the  speed  of  the  motor  when  the  chain  is  being  wound  on  the  barrel  at 
a  rate  of  20  feet  per  minute. 

If  a  load  of  10  tons  is  being  raised  at  this  speed,  what  power  will  be  taken 

by  the  motor,  assuming  the  combined  efficiency  of  the  motor  and  crane  is 
45  per  cent.  ? 

13.  A  steam  engine  is  driving  a  dynamo  by  a  belt  and  is  running  at  120  re- 
volutions per  minute.  The  diameter  of  the  driving  pulley  is  3  feet,  and  the 

tensions  in  the  tight  and  slack  portions  of  the  belt  are  2000  lbs.  and  800  lbs. 

respectively.   What  horse-power  is  the  engine  delivering  ? 
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14.  A  sliding  door  of  a  railway  carriage  is  3  feet  broad  and  weighs  250  lbs. 
It  closes  in  the  direction  of  motion  of  the  train.  The  door  is  fully  open  and 
the  train  travelling  at  20  miles  per  hour  when  the  latter  starts  slowing  up 
with  a  constant  retardation  of  2  feet  per  second  per  second.  If  the  resistance 
to  motion  between  the  door  and  the  carriage  is  constant  and  equal  to  4  lbs., 
find  the  velocity,  relative  to  the  train,  with  which  the  door  closes.  If  the 

catch  on  the  door  automatically  couples  it  when  it  closes,  find  the  impulse 
and  the  energy  dissipated. 

15.  A  locomotive  with  two  cylinders  each  19  inches  diameter,  22  inches 
stroke,  and  driving  wheels  5|  feet  diameter,  is  working  with  a  mean  steam 
pressure  in  the  cylinders  of  135  lbs.  per  sq.  inch.  Find  the  tractive  force  at 
the  rails,  assuming  that  10  per  cent,  of  the  power  developed  is  wasted  in  engine 
friction.  Calculate  also  the  greatest  load,  including  the  engine,  which  can  be 
taken  up  an  incline  of  1  in  150  at  10  miles  per  hour  if  the  resistance  per  ton 

at  this  speed  is  6-9  lbs. 

16.  The  pressure  in  one  end  of  a  steam  engine  cylinder,  during  ̂   revolu- 
tion, is  shewn  on  the  indicator  diagram  below,  fig.  126.  The  piston  area  is 

80  sq.  inches,  the  stroke  is  15  inches  and  the  engine  runs  at  120  revolutions 
per  minute.  Determine  the  average  effective  pressure  during  a  revolution,  the 

work  done  per  minute,  and  the  horse-power. 

Fig.  126. 

17.  The  engines  of  a  steamer  are  developing  2500  indicated  horse-power 
when  the  speed  is  steady  and  equal  to  16  knots.  If  the  overall  efficiency  is 
60  per  cent.,  find  the  total  resistance  to  motion  of  the  vessel  in  tons. 
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Assuming  the  total  resistance  varies  as  the  square  of  the  speed,  find  the 
new  steady  speed  when  the  horse-power  is  increased  to  3000,  the  overall 
efficiency  remaining  the  same. 

[1  knot  =  6080  feet  per  hour.] 

18.  A  gas  engine  is  speeding  up  under  no  load,  and  at  the  beginning  of 
one  cycle  the  speed  is  100  revolutions  per  minute.  The  indicator  diagram  for 
the  cycle  is  given  below.  Find  the  work  done  during  the  cycle,  and  the  speed 
of  the  engine  at  the  end  of  the  cycle,  neglecting  friction. 

Diameter  of  piston  18  inches.  Length  of  stroke  2  feet.  Moment  of  inertia 

of  flywheel  107  tons  ft.2   Scale  for  pressure,  1  inch  =  180  lbs.  per  sq.  in. 

Fig.  127. 

19.  In  a  single  cylinder  steam  engine,  the  diameters  of  the  piston  and  the 
piston  rod  are  respectively  11  inches  and  1|  inches,  the  length  of  stroke 
1  foot,  and  the  speed  197  revolutions  per  minute.  The  mean  pressure  on 

each  side  of  the  piston  is  found  from  the  indicator  diagrams  to  be  16*5  lbs. 
per  sq.  in.   Find  the  indicated  horse-power. 

If  the  engine  is  driving  a  dynamo,  the  output  of  which  is  10*8  kilowatts 
and  the  efficiency  95  per  cent. ,  find  the  horse-power  wasted  in  friction  in  the 
engine. 

[0*746  kilowatt  =  1  horse-power.] 

20.  In  order  to  determine  the  efficiency  of  some  gearing,  power  was 
transmitted  through  it  from  a  steam  engine.  The  indicated  horse-power  of 
the  engine  and  the  horse-power  given  out  by  the  gearing  to  a  brake  wheel 
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were  measured.    Previous  experiment  shewed  that  the  horse-power  wasted  in 

friction  in  the  engine  was  practically  constant  and  equal  to  2'6. 

Find  the  eflBciency  of  the  gearing  from  the  following  data : 

I.H.P.  of  the  engine,  24-2. 
Speed  of  engine  shaft,  240  r.p.m. 

Velocity  ratio  (crank  shaft  to  brake  wheel),  11-7. 
Torque  on  brake  wheel,  4750  lbs.  ft. 

21.  A  motor-car  delivers  25  horse-power  to  its  shaft.  The  engine  shaft  is 
geared  down  to  the  back  axle  in  the  ratio  4  to  1,  and  12  per  cent,  of  the 

shaft-power  is  lost  in  the  gear.  The  car  wheels  are  28  inches  in  diameter,  and 
the  car  is  running  at  32  miles  per  hour.  Find  the  torque  on  the  engine  shaft, 
the  torque  on  the  back  axle,  and  the  propulsive  force  between  the  road  and 
the  driving  wheels. 

The  car  runs  up  a  slope  of  1  in  25,  and  the  gear  is  changed  so  that  the 
reduction  ratio  is  6  to  1,  and  the  gear  loss  is  now  25  per  cent,  of  the  shaft 
power.  If  the  torque  on  the  engine  shaft  remains  constant,  while  the 
resistance  to  motion  is  proportional  to  the  square  of  the  speed,  find  the 
uniform  velocity  with  which  the  car  ascends  the  slope.  The  weight  of  the 
car  is  2500  lbs. 

22.  A  gas  engine  is  working  at  10  indicated  horse-power  and  at  200  revo- 
lutions per  minute  when  the  gas  is  suddenly  cut  off.  Assuming  the  torque 

due  to  the  brake  and  other  resistances  remain  constant,  find  the  number  of 
revolutions  the  engine  makes  before  coming  to  rest.  The  moment  of  inertia 

of  the  flywheels  is  3500  lbs.  feet^. 

23.  What  is  the  rate  in  horse-power  at  which  energy  can  be  delivered  by 
a  stream,  2  square  feet  in  section,  flowing  at  the  rate  of  8  feet  per  second? 
(1  cu.  ft.  of  water  weighs  62^  lbs.) 

If  the  stream  is  used  to  drive  a  water  wheel  turning  at  a  constant  rate  of 

30  revolutions  per  minute  and  exerts  on  it  a  constant  couple  of  120  in  feet 
and  lbs.,  what  is  the  efficiency  of  the  arrangement? 

24.  Flat  vanes  are  arranged  radially  round  the  circumference  of  a  wheel 
to  form  a  water  turbine.  A  jet  of  water  impinges  on  the  vanes,  the  direction 

of  the  jet  being  tangential  to  the  wheel  and  at  a  distance  of  9  inches  from 
the  centre.  The  velocity  of  the  jet  is  50  feet  per  second,  and  the  discharge 
is  20  cubic  feet  per  minute.  Find  what  should  be  the  speed  of  the  wheel  for 

maximum  horse-power,  and  the  theoretical  horse-power  at  that  speed. 
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25.  The  effective  diameter  of  a  Pelton  wheel  is  40  inches  and  the  nozzle 

area  12-5  square  inches.  It  is  suppUed  with  672  cubic  feet  of  water  per  minute 
and  runs  at  a  speed  of  380  revolutions  per  minute.  Find  the  theoretical 
efficiency  assuming  the  direction  of  motion  of  the  water  completely  reversed. 

If  the  horse-power  given  out  is  250,  what  is  the  actual  efficiency? 

26.  A  moving  staircase  has  a  speed  of  100  feet  per  minute,  and  rises 
30  feet  vertically  in  50  feet  horizontally.  180  people  use  the  staircase  per 
minute,  and  the  average  weight  per  person  is  9  stones.  When  they  step  on 
at  the  bottom,  they  do  so  at  a  speed  relative  to  the  ground  of  80  feet  per 
minute  in  the  direction  of  motion  of  the  staircase.  They  remain  at  rest 

relatively  to  the  staircase  while  moving  horizontally  at  the.  bottom  and  top, 
but  during  the  rise  they  climb  relatively  to  the  staircase  at  a  rate  of  60  feet 
vertically  per  minute.  At  the  top  they  step  off  in  the  direction  of  motion 
with  a  speed  of  100  feet  per  minute  relative  to  the  ground. 

Find  the  horse-power  required  to  maintain  the  motion  of  the  staircase, 
neglecting  friction. 

27.  Work  is  done  at  the  rate  of  17*5  horse-power  in  driving  a  car,  which 
weighs  8  tons,  up  an  incline  of  1  in  20  at  a  speed  of  6  miles  per  hour.  If  the 
frictional  resistances  remain  constant,  find  the  acceleration  in  feet  per  second 

per  second  when  the  car  is  allowed  to  run  freely  down  the  same  incline. 

28.  In  a  horse  car  the  energy  of  rotation  of  the  wheels  is  a  negligible 
fraction  of  the  total  energy  of  the  car,  but  in  an  electric  car  the  energy  of  the 
rotation  of  armatures,  gear  wheels,  etc.,  is  appreciable.  Given  two  cars,  one 
in  which  the  rotational  energy  may  be  neglected,  and  one  in  which  it  amounts 

to  one-tenth  of  the  total  energy  of  the  car,  shew  that,  neglecting  friction, 
their  accelerations  down  a  given  slope  are  in  the  ratio  of  10  to  9. 

Call  the  two  cars  A  and  B  and  suppose  that  their  total  weights  are  equal, 
then  find  the  acceleration  down  a  slope  of  inclination  a  (1)  of  car  A  running 
alone,  (2)  of  car  B  running  alone,  (3)  of  A  and  B  running  coupled. 

29.  A  pump  is  driven  by  an  electric  motor  by  means  of  a  belt.  When  the 

inotor  is  absorbing  20  horse-power,  the  pump  lifts  400  gallons  of  water  per 
minute  through  a  height  of  80  feet.  What  is  the  efficiency  of  the  plant  as  a 
whole  ?  Neglect  the  kinetic  energy  of  the  water.  1  gallon  of  water  weighs 
10  lbs. 

If  the  motor  has  an  efficiency  of  88  per  cent.,  find  the  efficiency  of  the  pump, 
nagl&cting  any  loss  of  power  in  the  belt. 
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In  addition  to  raising  the  water  through  80  feet  the  pump  is  required  to 
deliver  it  against  a  pressure  of  20  lbs.  per  sq.  inch.  Assuming  that  the 
efficiency  of  the  plant  is  the  same  as  in  the  previous  case,  find  what  power 
must  be  supplied  to  the  motor. 

30.  A  steam  engine  has  a  stroke  of  10  inches,  and  is  running  uniformly 
at  a  speed  of  250  revolutions  per  minute.  The  piston  weighs  80  lbs.  Neglecting 
the  obliquity  of  the  connecting  rod,  find  how  much  energy  is  stored  in  the 
piston  (1)  between  dead  centre  and  quarter  stroke,  and  (2)  between  quarter 
stroke  and  half  stroke.  « 

Also  find  the  amount  of  energy  stored  in  the  piston  while  the  crank  moves         J 

through  an  angle  pf  45°  from  dead  centre. 
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The  following  examples  are  not  arranged  in  order  of  difficulty  nor  according 
to  the  principle  involved. 

1.  Four  members  of  a  frame,  A,  B,  C  and  D,  all  lie  in  one  plane,  and 
meet  at  a  point.  Members  B,  C  and  D  make  angles,  all  measured  in  the 

same  direction,  of  90°,  210°,  257^°  respectively,  with  the  member  A.  The 
pulls  in  the  members  C  and  D  are  4'7  tons  and  5  tons  respectively.  Find  the 
pulls  in  members  A  and  B  (1)  graphically,  (2)  by  calculation. 

a.  In  order  to  find  the  height  of  an  airship  which  is  travelling  over  the 
sea,  a  gun  is  fired  from  the  ship  and  the  time  between  the  firing  of  the  gun 
and  the  receipt  of  the  sound  reflected  from  the  sea  is  noted.  The  time  in  one 

case  was  15*8  seconds.    What  was  the  height  of  the  airship  ? 

If  five  minutes  later  the  time  was  16  "6  seconds,  what  was  the  vertical 
velocity  assuming  it  to  be  uniform? 

[Velocity  of  sound  in  air  =  1080  feet  per  second.] 

3.  A  section  of  a  railway  between  two  points  A  and  B  distant  2000  yards 
apart,  is  given  by  the  following  table  which  shews  the  elevation  above  A  for 
every  200  yards  : 

Distances 
in  yds. 

A 200 400 600 800 1000 1200 1400 1600 1800 B 

Heights 
in  ft. 

0 

3i 

10 
17 

25 

32 
38 

40 

36i 
28i 

16 

A  train,  the  mass  of  which  exclusive  of  the  engine  is  300  tons,  passes  A  at 

a  speed  of  30  miles  per  hour.  The  locomotive  exerts  a  constant  draw-bar 
pull  of  7000  lbs.,  and  the  train  resistance  may  be  taken  as  15  lbs.  per  ton. 
Draw  a  curve  shewing  the  variation  in  speed  as  the  train  advances  from  A  to  B. 

4.  Shew  that  if  a  body  is  moving  in  a  circular  path  of  radius  r  feet  with 
a  uniform  speed  of  w  radians  per  second,  then  it  has  an  acceleration  towards 

the  centre  equal  to  w^r  feet  per  second  per  second. 

The  mean  diameter  of  a  cast-iron  flywheel  is  4  ft.  3  in.  What  is  the 
maximum  speed  of  rotation,  expressed  in  revolutions  per  minute,  if  the  mean 
stress  in  the  rim  is  not  to  exceed  ̂   ton  per  sq.  inch? 

[1  cubic  foot  of  cast-iron  weighs  460  lbs.] 
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5.    The  relation  between  the  tractive  force  on  a  car  weighing  1  ton  and  the 
time  is  as  follows  : 

Time  in  sees. 0 5 
10 15 

20 25 

30 

Force  in  lbs.  wt. 

■ 
110 108 104 

98 

88 

78 70 
If  the  car  starts  from  rest  and  the  resistances  to  motion  are  equivalent  to 

a  force  of  40  lbs.,  draw  the  acceleration-time  curve  for  the  motion  and  find 
the  velocity  at  the  end  of  the  30  seconds. 

6.  A  train  A,  moving  with  a  constant  speed  of  30  miles  per  hour,  is  passing 
another  train  B,  which  is  at  rest  on  a  parallel  track.  At  the  instant  when 
the  engines  of  the  two  tr|i,ins  are  opposite,  the  train  B  starts  with  a  constant 
acceleration  of  2  feet  per  second  per  second.  What  length  of  time  will  elapse 
before  the  two  trains  again  occupy  the  same  relative  position  ?  If  the  train  B 

is  100  yards  long,  at  what  distance  from  its  starting  point  will  it  have  com- 
pletely overtaken  train  A  ? 

7.  Below  is  an  indicator  diagram  for  one  end  of  one  cylinder  of  a  loco- 
motive, the  spring  used  being  such  that  1  inch  on  the  diagram  represents 

150  lbs.  per  sq.  inch.  The  diameter  of  the  cylinder  is  20  inches,  the  stroke 
22  inches,  and  the  speed  240  revolutions  per  minute.  Find  the  indicated 

horse-power  represented  by  the  diagram. 
[Prick  the  diagram  through  to  your  paper.] 

Fig.  128. 

8.  A  uniform  disc,  18  inches  in  diameter,  and  weighing  30  lbs.,  is  keyed 
to  a  spindle  of  1  inch  diameter  and  is  mounted  on  frictionless  bearings.  A 
light  cord  is  wound  round  the  spindle  and  carries  a  weight  of  1  lb.  at  its  free 
end.  Find  the  angular  acceleration  of  the  disc,  and  the  linear  acceleration 

of  the  weight  when  the  system  is  in  motion. 
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9.  One  part  of  the  track  of  a  switch-back  railway  consists  of  a  complete 
vertical  circle  of  20  feet  diameter.  Neglecting  friction,  find  the  minimum 
velocity  with  which  a  car  must  start  on  its  journey  round  the  circle  if  it  is  to 
keep  the  rails.  How  high  must  the  starting  point  of  the  track  be  above  the 

top  of  the  circular  portion  in  order  that  this  minimum  velocity  may  be  at- 
tained ?    The  rotational  inertia  of  the  wheels  may  be  neglected. 

10.  A  shell  is  fired  so  that  at  the  highest  point  of  its  flight  it  just  passes 

over  a  mountain  3000  feet  high  and  distant  5  miles  from  the  point  of  pro- 
jection. Find  the  ratio  of  the  horizontal  component  of  the  velocity  of  pro- 

jection to  the  vertical  component,  and  the  values  of  these  components. 

If  the  shell  weighs  350  lbs.,  what  is  its  kinetic  energy  (1)  as  it  leaves  the 
gun,  (2)  as  it  passes  through  the  highest  point  of  its  flight  ? 

11.  The  crank  of  an  engine  is  9  inches,  the  connecting  rod  3  feet,  and  the 
line  of  stroke  of  the  piston  passes  through  the  axis  of  the  crank  shaft.  The 
speed  of  the  crank  is  210  revolutions  per  minute.  Find,  graphically,  the 

velocity  of  the  piston  at  one-quarter  of  the  distance  from  each  end  of  the 
stroke. 

For  the  same  two  positions  of  the  piston,  find  the  velocity  of  rubbing 
between  the  connecting  rod  and  crank  pin,  if  the  latter  is  2|  inches  in  diameter. 

12.  In  a  double-acting  steam  engine  the  stroke  is  12  inches  long  and  the 
connecting  rod  may  be  assumed  infinitely  long.  The  effective  thrust  on  the 
crosshead  due  to  the  steam  pressure  is  constant  and  equal  to  2000  lbs.  Shew 
that  the  torque  on  the  crank  shaft  produced  by  this  thrust  varies  as  the  sine 
of  the  angle  turned  through  by  the  crank  from  the  dead  centre  position. 

Plot  a  curve  shewing  the  turning  moment  on  the  crank  and  the  angle 
turned  through  by  the  crank. 

13.  In  the  previous  question,  the  engine  is  working  against  a  constant 
resisting  torque  and  the  mean  speed  is  240  revolutions  per  minute.  Find  the 
moment  of  inertia  of  the  flywheel  required  to  limit  the  speed  fluctuation  to 
3  per  cent,  above  or  below  the  mean  speed. 

14.  A  gunboat  with  hydraulic  jet  propulsion  takes  water  in  through 

vertical  openings  amidships  and  discharges  it  astern.  A  discharge  of  5*2  tons 
per  second  at  a  velocity  of  29  feet  per  second  relative  to  the  boat  gave  a  speed 

of  9-3  knots.    Find  the  resistance  to  motion  of  the  boat. 
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15.  A  casting,  the  shape  of  which  is  an  equilateral  triangle  with  a  cylin- 
drical boss  at  each  corner,  is  bolted  to  the  face-plate  of  a  lathe,  the  axis  of 

one  of  the  bosses  coinciding  with  the  axis  of  the  face-plate.  The  length  of 
the  sides  of  the  casting,  measured  from  centre  to  centre  of  the  bosses,  is 

10  inches,  and  the  weight  is  6  lbs.  Find  where  on  the  face-plate  a  mass  of  2  lbs. 
should  be  bolted  in  order  to  balance  the  centrifugal  force  of  the  casting. 

16.  A  flexible  belt  weighing  |  lb.  per  foot  connects  two  equal  pulleys  the 
centres  of  which  are  10  feet  apart.  The  diameter  of  the  pulleys  is  3  feet,  and 
the  moment  of  inertia  of  each  is  110  lbs.  ft.  Find  the  couple  required  to 

uniformly  increase  the  speed  from  120  revolutions  per  minute  to  240  revo- 
lutions per  minute  in  30  seconds. 

17.  A  roundabout  makes  3  revolutions  per  minute,  and  the  horses  are 
suspended  from  the  roof  at  a  distance  of  15  feet  frona  the  centre  by  rods 
8  feet  long.  What  is  (1)  the  angular  velocity  of  the  roundabout,  (2)  the  speed 
of  the  points  of  suspension,  (3)  the  speed  of  the  horses? 

18.  A  train  weighing  100  tons  starts  from  rest  and  the  engine  exerts  a 
uniform  pull  of  3  tons  against  a  road  resistance  of  15  lbs.  per  ton.  In  what 
time  will  the  speed  reach  v  feet  per  second,  and  how  far  will  the  train  move 
in  the  time  ? 

If  steam  is  cut  off  and  the  brakes  applied,  with  a  retarding  force  of  20  tons, 
when  the  speed  is  v  feet  per  second,  how  far  and  how  long  will  the  train  run 
before  coming  to  rest? 

The  train  has  to  run  a  distance  of  2  miles  from  stop  to  stop  and  the  speed 
is  not  to  exceed  45  miles  an  hour.    How  long  will  the  journey  take? 

19.  The  balance  wheel  of  a  small  clock  weighs  jounce  and  its  radius  of 

gyration  is  f  inch.  The  periodic  time  of  oscillation  is  1  second  and  its 

amplitude  180  degrees.  What  is  the  strength  of  the  controlling  spring  ex- 
pressed in  inch-lbs.  per  radian?  Find  also  the  maximum  energy  stored  in 

the  spring  at  any  time. 

20.  Explain  clearly  how  it  is  that  the  pressure  of  a  brake  on  the  rim  of 
the  wheel  of  a  vehicle  produces  a  retarding  force  on  the  vehicle  considered 
as  a  whole. 

A  railway  truck,  weighing  15.  tons,  is  running  freely  at  20  miles  an  hour 
down  an  incline  of  1  in  100  when  brakes  are  applied  equally  to  all  four  wheels 

i 
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with  a  pressure  of  1000  lbs.  each.  Taking  the  coefficient  of  friction  between 

brake-block  and  wheel  to  be  |,  and  neglecting  other  resistances  to  motion 
and  also  the  inertia  of  the  wheels,  find  how  far  down  the  incline  the  truck 

would  travel  after  the  application  of  the  brakes.  In  what  manner  would  the 
inertia  of  the  wheels,  if  taken  into  account,  affect  the  calculated  value  of  the 

retarding  force? 

21.  A  cage,  weighing  16  cwt.  with  its  load  of  coal,  is  lifted  from  the  bottom 
of  a  mine  by  a  rope  weighing  6  lbs.  per  yard.  The  rope  is  wound  straight  on 
to  a  drum  8  feet  in  diameter,  and  a  constant  torque  of  4  tons  ft.  is  applied 
to  drive  the  drum.  At  the  start  there  is  a  length  of  210  feet  of  rope  hanging 
vertical,  and  there  is  one  complete  turn  of  rope  on  the  drum.  The  inertia  of 
the  drum  itself  may  be  neglected.  Find  how  much  work  has  been  done  when 
four  more  complete  turns  have  been  wound  on  the  drum,  and  the  velocity  of 
the  cage  at  that  instant. 

22.  A  marine  turbine  makes  165  revolutions  per  minute,  and  carries  a 
screw  whose  blades  measure  8  feet  8  inches  from  the  centre  of  the  shaft  to 

the  tip  of  the  blade.  Find  the  circumferential  speed  of  the  tip  of  the  blade, 
and  express  it  in  feet  per  second  and  in  miles  per  hour. 

The  wheel  of  a  Laval  turbine  is  30  inches  in  diameter,  and  it  runs  at 

10,500  revolutions  per  minute.    Find  the  speed  of  a  point  on  the  rim. 

23.  A  car  starts  from  rest  and  its  velocity  has  the  following  values  at  the 
times  specified: 

Time  in  sees. 1 2 3 4 5 

Velocity  in  ft.  per  sec. 2 5 
8-0 

9-5 

10 

Plot  the  velocity-time  curve  and  find  the  time-average  of  the  velocity,  and 
the  total  distance  covered. 

Find  also  the  time-averase  of  the  acceleration,  and  its  maximum  value. 

24.    A  body  weighing  10  lbs.  is  moving  with  a  simple  harmonic  motion, 
the  length  of  its  path  being  12  inches,  and  the  maximum  velocity  8  feet  per 
second.    Draw  the  force-distance  curve,  and  the  force-time  curve  for  the 
motion  from  the  centre  to  one  end  of  the  path,  and  determine  the  space 
average  and  the  time-average  of  the  force. 
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25.  The  figure  below  shews  a  governor  in  which,  at  a  speed  of  120  revolu- 
tions, the  sleeve  remains  at  rest.  For  this  speed,  find  the  forces  in  the  rods 

AB  and  BC,  if  the  ball  at  B  weighs  1  lb. 

Assuming  the  sleeve  at  C  does  not  move,  at  what  speed  will  the  stress  in 
BC  be  zero? 

Fig.  129. 

26.  A  btillet  weighing  ̂   ounce  and  travelling  at  2000  feet  per  second  is 
just  held  up  by  a  fixed  block  of  wood  of  length  36  inches  in  the  direction  of 
impact.  A  ballistic  pendulum  arranged  as  shewn  in  fig,  92,  p.  144,  is  made 
of  the  same  wood.  It  is  30  inches  long  in  the  direction  of  impact  and  weighs 
25  lbs.  A  bullet  similar  to  the  above  and  travelling  with  the  same  speed  is 
fired  into  the  pendulum.  Find  (1)  the  speed  with  which  the  bullet  emerges, 
(2)  the  height  the  pendulum  rises,  (3)  the  kinetic  energy  imparted  to  the 
pendulum,  (4)  the  energy  wasted  in  heat,  (5)  the  time  taken  for  the  bullet  to 
pass  through  the  pendulum.  The  pendulum  may  be  assumed  to  remain  at 
rest  during  the  passage  of  the  bullet  through  it. 

27.  What  is  the  side  pressure  between  a  train  weighing  300  tons  and  the 
rails  when  the  train  goes  round  a  curve  of  120  yards  radius  at  the  rate  of 
30  miles  an  hour,  the  rails  being  on  the  same  level?  What  will  the  side 

pressure  be  if  the  rails  are  banked  at  an  angle  of  5°  ? 

28.  A  motor  running  at  600  revolutions  per  minute  is  belted  to  a  machine, 

the  ordinary  fast  and  loose  pulley  arrangement  being  used,  and  the  speed 
being  reduced  in  the  ratio  3  to  1.    If  the  belt  is  suddenly  shifted  from  the 
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loose  to  the  fast  pulley,  find  the  speed  of  the  machine  shaft  immediately  after 
slipping  has  ceased.  The  moment  of  inertia  of  the  armature  shaft  of  the 
motor  is  800  lbs.  ft.^,  that  of  the  machine  shaft  400  lbs.  ft.2,  and  the  inertia 
of  the  loose  pulley  and  belt  may  be  neglected. 

29.  A  uniform  plank  20  feet  long  has  one  end  against  a  vertical  wall,  the 
other  on  a  horizontal  plane.  The  plank  just  starts  skidding  when  the  angle 

of  inclination  to  the  vertical  is  80°.  Assuming  the  resistance  to  motion 
down  the  vertical  wall  is  negligibly  small,  and  that  along  the  horizontal  plane 
it  is  constant,  find  the  angular  velocity  of  the  plank  at  the  instant  it  reaches 
the  ground. 

30.  The  motion  of  a  point  is  the  resultant  of  two  simple  harmonic  motions 
in  two  directions  at  right  angles  to  one  another  and  of  the  same  periodic 
time.    Shew  that  the  path  of  the  point  is  an  ellipse. 

31.  A  ship  lies  at  anchor,  half  a  mile  from  the  shore,  in  a  stream  running 
at  8  miles  per  hour.  A  boat  starts  from  the  shore,  1  mile  higher  up  stream, 
and  is  rowed  at  right  angles  to  the  shore.  At  what  speed  must  it  be  rowed 
in  order  that  it  may  reach  the  ship  ? 

Find  also  the  speed  required  when  the  boat  is  rowed  in  a  direction  at  right 
angles  to  the  line  joining  its  starting  point  to  the  ship. 

If  the  greatest  speed  at  which  the  boat  can  be  rowed  is  5  miles  per  hour, 
shew  that  it  cannot  reach  the  ship  unless  its  starting  point  be  at  least 
1100  yards  higher  up  stream  than  the  ship. 

32.  A  bullet  of  mass  m  travelling  at  a  certain  speed  is  just  stopped  in  a 
distance  S  by  a  fixed  target,  the  resistance  to  penetration  of  which  is  constant. 

Shew  that  if  the  same  bullet  travelling  horizontally  with  the  same  speed 
strikes  a  target  of  the  same  material  as  before,  and  of  mass  M,  which  is  free  to 

M 
move  horizontally,  it  will  penetrate  a  distance  .,   S.    Find  the  time  of M+7n 
penetration, 

33.  In  a  steam  engine  the  crank  is  6  inches  long,  the  connecting  rod 
3  feet  long,  and  the  speed  200  revolutions  per  minute.  Shew  that  the  velocity 

in  feet  per  second  is  approximately  given  by  10*47  sin  ̂ +  '87  sin  2^,  where  6 
is  the  angle  which  the  crank  makes  with  the  inner  dead  centre. 

Find  a  similar  expression  for  the  acceleration  of  the  piston. 

34.  In  an  engine  driven  by  water  pressure  the  crank  AB  is  acted  upon 
by  three  connecting  rods  BC,  BD,  BE.  For  the  positions  shewn  in  fig.  130, 
the  thrusts  in  the  rods  are  40  lbs.,  180  lbs.,  and  200  lbs.  respectively.  Find, 
graphically,  the  resultant  force  produced  by  these  on  the  crank  pin,  and 
also  its  components  parallel  and  perpendicular  to  the  crank. 

L.  E.  D.  15 
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Check  your  results  analytically,   by  resolving  all  the  forces  along  and 
perpendicular  to  the  crank. 

[The  figure  may  be  pricked  through  to  your  paper.] 

R  =  3'34 

D 

Fig.  130. 

36.  An  engineer's  pocket-book  gives  the  following  formula  for  the  re- 
tarding force  R  required  to  stop  a  train  travelling  at  V  miles  per  hour  in 

D  feet,  R  being  the  force  in  percentage  of  the  weight  of  the  train. 

y2
 

D'
 

Prove  this  formula. 

36.  In  a  small  shaping  machine  the  mechanism  of  which  is  shewn  dia- 
grammatically  in  fig.  131,  the  tool  is  fixed  to  the  ram  C.  When  the  crank  AB 

is  inclined  at  45°  to  the  line  of  stroke  the  force  at  the  cutting  edge  of  the  tool 
along  the  line  of  stroke  is  500  pounds.  Find  the  couple  required  on  the  crank, 
neglecting  friction  and  the  effect  of  inertia  of  the  moving  parts.  Find,  also, 

the  length  of  stroke  of  the  tool,  and  the  ratio  of  time  of  cutting  to  time  of 
return. 

AB=   3" 
BC  =  15" 
AD=:    3" 

Fig,  131. 
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37.  In  an  inclined  railway  the  length  of  the  track  is  7017  feet  and  the 

gradient  is  uniform  and  equal  to  1  in  9-75.    The  weight  of  an  empty  train  is 
19  tons,  and  it  can  carry  a  maximum  load  of  21  tons.  Two  trains  are  run 

simultaneously,  one  ascending  and  the  other  descending,  the  two  being  con- 
nected by  a  steel-wire  rope  which  passes  round  a  10  foot  pulley  at  the  top. 

The  pulley  is  rotated  by  a  stationary  engine.  The  weight  of  the  rope  is 
2^  lbs.  per  foot.  Neglecting  friction,  find  the  varying  torque  required  to 
steadily  haul  a  full  train  up  the  incline,  the  descending  train  being  empty. 

If  the  journey  takes  15  minutes,  neglecting  the  power  to  start  and  stop, 

find  the  average  horse-power. 

38.  In  question  37  above,  if  the  trains  are  started  with  a  uniform  ac- 
celeration so  that  they  attain  their  speed  in  6  seconds,  what  torque  on  the 

pulley  will  be  required  for  accelerating?  The  moment  of  inertia  of  the  pulley 
and  the  wheels  of  the  train  may  be  neglected. 

39.  A  disc  of  10  inches  diameter  is  keyed  eccentrically  to  a  horizontal 
shaft,  the  distance  between  the  centres  being  3  inches.  The  disc  presses 
against  the  underside  of  a  horizontal  plate,  and  is  used  as  a  cam  to  give  a 
reciprocating  vertical  motion  to  the  plate.  Shew  that  the  reciprocating 
motion  is  simple  harmonic,  and  determine  the  length  of  the  stroke.  Find 
also  the  maximum  velocity  of  the  plate  when  the  disc  is  rotating  once  in  a 
second. 

40.  A  car  starts  from  rest  and  moves  with  a  uniform  acceleration  of 

1^  feet  per  second  per  second.    How  long  will  it  take  to  acquire  a  velocity  of 
20  miles  per  hour,  and  how  many  feet  will  it  move  in  the  time  ? 

If  the  car  weighs  2000  lbs.  and  the  motion  is  on  the  level  and  against  an 
external  resistance  of  30  lbs.  wt.  what  is  the  value  of  the  horizontal  force 

between  the  car  and  the  ground  ? 

41.  A  weight  moves  as  a  conical  pendulum,  at  the  end  of  a  string  8  feet 
long  and  makes  40  revolutions  per  minute.  Find  to  the  nearest  degree  the 
inclination  of  the  string  to  the  vertical. 

A  string  whose  length  is  I  passes  through  a  heavy  ring  and  has  its  ends 
attached  to  two  points,  distant  a  apart  in  the  same  vertical  line.  Shew  that 
when  the  ring  rotates  in  a  horizontal  circle  the  portion  of  string  between  the 
ring  and  the  lower  point  of  support  will  be  horizontal  if  the  angular  velocity 

is  given  by  0,2=2^^^^^. 
15—2 
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42.  A  traction  engine  weighing  8  tons  is  hauling  a  loaded  wagon  iSreighing 
18  tons  along  a  level  road,  at  5  miles  per  hour.  There  is  a  spring  coupling 
between  the  engine  and  the  wagon,  and  the  extension  of  the  spring  shews 
that  the  pull  on  the  wagon  is  600  lbs.  At  what  rate  in  horse-power  is  work 
being  done  in  hauling  the  wagon? 

If  the  resistance  per  ton  is  the  same  for  the  engine  as  for  the  wagon,  what 

is  the  total  resistance  overcome  by  the  engine  and  at  what  rate,  in  horse- 
power, is  the  engine  working? 

43.  The  motion  of  a  body  moving  in  a  straight  path  is  given  by 

s  =  10  +  8t  +  6t^,  s  being  measured  in  feet  and  t  in  seconds.  Plot  the  distance- 
time  curve,  the  velocity-time  curve,  and  the  velocity- space  curve,  for  the  first 
6  seconds.  For  this  period  find  the  time-average  and  the  space-average  of  the 
velocity. 

44.  A  body  swings  about  a  fixed  horizontal  axis  through  an  angle  a  on 
either  side  of  its  position  of  equilibrium.    Prove  that  for  different  values  of 

a  the  maximum  angular  velocity  of  the  body  is  proportional  to  sin  -  . 

A  body  makes  complete  revolutions  about  a  fixed  horizontal  axis,  about 
which  its  radius  of  gyration  is  A;,  and  the  centre  of  gravity  of  the  body  is  at 
a  distance  c  from  the  axis.   If  the  greatest  and  least  angular  velocities  are 

^  per  cent,  greater  and  ̂   per  cent,  less  than  w,  prove  that  w  =  */     ,f   . 

45.  What  do  you  understand  by  a  curve  of  crank  effort?  Shew  how  to 

determine  the  crank  effort  corresponding  to  a  given  piston-thrust  in  any 
position  of  the  crank  of  a  single-cylinder  engine. 

Determine  the  crank  effort  for  a  piston-thrust  of  100  lbs.  when  the  crank 

makes  (I)  45°,  (2)  90°,  (3)  135°  with  the  line  of  stroke,  the  lengths  of  the 
crank  and  connecting  rod  being  6  inches  and  24  inches. 

46.  A  cage  weighing  1  ton  is  being  raised  from  the  bottom  of  a  shaft 
200  feet  deep  by  means  of  a  drum  and  chain.  The  chain  weighs  5  lbs.  per 
foot.  Draw  a  curve  of  the  effort  exerted  at  the  lifting  drum,  throughout  the 
motion,  and  find  the  whole  work  done  during  the  lift.  If  the  cage  is  raised 
at  a  uniform  speed  in  2|  minutes,  find  the  maximum  and  the  mean  values 

of  the  horse-power  exerted  at  the  drum. 

47.  Two  links  AB  and  CD  are  pivoted  at  A  and  C  and  a  weight  of  10  lbs. 
hangs  from  point  E  in  the  link  BD,  as  shewn  in  fig.  182.  Prick  the  figure 
through  to  your  paper,  and  taking  2  inches  to  represent  the  velocity  of  the 
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point  D,  find  the  angular  velocity  ratio  of  AB  and  CD,  and  the  position  of 
the  point  in  BD  which  has  a  vertical  motion. 

Find  also  what  couple  must  be  applied  to  CD  in  order  to  just  support  the 
weight. 

->  Couple 

27r 

Fig.  132. 

48.  A  uniform  heavy  rod  is  supported  in  a  horizontal  position,  being 

pivoted  at  one  point  in  its  length  and  attached  at  another  point  to  the  end 
of  a  spring  which  hangs  from  a  fixed  point  vertically  above  the  point  of 
attachment.  If  a  is  the  distance  between  the  points  of  support,  k  the  radius 
of  gyration  about  the  pivot,  and  d  the  extension  of  the  spring  when  it  carries 

a  weight  equal  to  the  weight  of  the  rod,  shew  that  the  period  of  small  oscilla- 
tions in  a  vertical  plane  is 

If  a  sliding  weight  is  moved  from  the  pivot  towards  the  spring  how  is  the 
period  affected  ? 

49.  The  engines  of  a  steamship  develop  20,500  i.h.p.  Of  the  power  de- 
veloped 15  per  cent,  is  lost  in  engine  and  shaft  friction,  and  30  per  cent,  in 

slip  and  friction  of  the  propeller.  If  the  speed  of  the  ship  is  20  knots  what 
is  the  total  resistance  to  its  motion? 

If  the  resistance  vary  as  the  square  of  the  speed,  what  i.h.p.  is  required  for 
a  speed  of  22  knots? 

1  knot  is  6080  feet  per  hour. 

50.  A  centrifugal  pump  lifts  water  at  the  rate  of  6000  gallons  per  minute 
and  discharges  it  at  a  level  of  10  feet  above  the  level  of  suction.  The  dis- 

charge pipe  is  18  inches  in  diameter  and  runs  just  half  full.    Find  how  much 
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work  is  spent  per  minute  (1)  in  lifting  the  water,  (2)  in  imparting  kinetic 
energy  to  it. 

The  pump  runs  at  460  revolutions  per  minute  and  one-fifth  of  the  power 
supplied  to  it  is  wasted  in  friction,  slip,  etc.    What  is  the  torque  on  its  shaft? 

51.   A  train  starts  from  rest  and  its  velocity  during  the  first  90  seconds  of 
its  motion  is  given  in  the  following  table: 

Time  from  start  in  sees. 

15 
30 

45 

60 75 

19-3 

90 

20 Velocity  in  ft,  per  sec. 5-2 

10 
14  1 

17-3 Plot  the  velocity-time  curve,  and  determine  the  distance  travelled  in  the 
given  time. 

From  the  curve  deduce  the  value  of  the  starting  acceleration  and  plot  a 

curve  shewing  approximately  how  the  acceleration  diminishes. 

62.  In  a  gas  engine  the  maximum  amount  of  energy  which  the  two  fly- 
wheels have  to  absorb  and  give  out  during  running  is  equal  to  3550  ft.-lbs. 

The  mean  speed  of  the  engine  is  200  revolutions  per  minute,  and  the  moment 
of  inertia  of  each  wheel  is  equivalent  to  a  mass  of  692  lbs.  acting  at  a  radius 

of  2^  feet.   Find  the  greatest  fluctuation  of  speed  of  the  engine. 

53.  What  is  the  length  of  a  simple  pendulum  whose  periodic  time  is 
2-3  seconds? 

How  will  the  time-keeping  of  a  pendulum  clock  be  affected  if  it  be  taken  to 

a  place  where  "/7"  is  decreased  by  O'Ol  per  cent.? 

54.  A  balloon  weighing  5  cwt.  is  moving  horizontally  at  100  feet  from  the 
ground  when  50  lbs.  of  ballast  is  suddenly  released.  Neglecting  the  friction 
of  the  air,  find  how  high  the  balloon  will  be  when  the  ballast  reaches  the 

ground. 

55.  A  shell  is  fired  at  an  elevation  of  15°  so  as  to  hit  a  mark  900  yards 
distant  on  a  horizontal  plane.  Find  its  velocity  of  projection  and  its  time  of 
flight.  Find  also  its  height  above  the  ground  when  it  has  travelled  600  yards 
horizontally. 

56.  A  lifting  gear  consists  of  a  train  of  toothed  wheels  as  shewn  in  fig. 
133,  the  intermediate  wheels  being  keyed  to  the  same  axle.  The  gear  is 
driven  by  a  force  P  applied  at  the  end  of  the  handle  AP,  which  is  18  inches 
long  and  is  fixed  to  the  wheel  A.    The  load  W  is  supported  by  a  rope  wound 
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round  a  drum  of  4  inches  diameter.    The  numbers  of  teeth  are,  on  A  21,  on 

B  60,  on  C  18,  on  D  70.    Find  the  velocity  ratio  of  the  machine. 

If  a  force  P  of  3  lbs.  raises  a  load  W  of  200  lbs. ,  shew  that  the  efficiency  is 

66*7  per  cent.  , 

Fig.  133. 

57.  An  engine  running  at  120  revolutions  per  minute  has  a  pulley  of 
36  inches  diameter  which  is  belted  to  a  pulley  of  20  inches  diameter  on 
a  countershaft.  A  second  pulley  on  the  countershaft  is  belted  to  a  pulley  of 
12  inches  diameter  on  a  dynamo,  and  the  dynamo  is  required  to  run  at  720 
revolutions  per  minute.  Find  the  diameter  of  the  second  pulley  on  the 
countershait. 

The  engine  is  delivering  50  horse-power  to  its  belt,  and  2  horse-power  is 
lost  in  friction  at  the  countershaft.  Neglecting  other  losses,  find  the  tension 
in  each  belt,  assuming  that  in  each  case  the  tension  in  the  tight  portion  of 
a  belt  is  double  that  in  the  slack  portion. 

58.  In  an  inward  flow  water  turbine  the  external  diameter  of  the  rotor  is 

15  inches  and  the  vanes  are  radial  at  the  point  of  entry.  The  velocity  of  the 
water  just  before  entry  is  50  feet  per  second,  and  the  speed  of  the  rotor  is 
380  revolutions  per  minute. 

At  what  angle  of  inclination  with  the  tangent  should  the  water  enter  if 
there  is  to  be  no  shock  ? 

Assuming  no  shock,  the  supply  500  cubic  feet^per  minute,  and  the  discharge 
radial,  find  the  turning  moment  on  the  rotor. 
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59.  Two  trains  start  from  a  station  along  the  same  track,  one  8  minutes 
after  the  other.  Each  has  a  constant  acceleration  until  the  maximum  speed 
of  50  miles  per  hour  is  reached,  1  mile  from  the  start.  How  far  has  the  first 

train  gone  when  the  second  train  starts,  and  how  far  apart  are  they  when 
both  are  running  at  the  same  speed? 

If  the  second  train,  with  the  same  acceleration,  reaches  a  maximum  speed 
of  60  miles  an  hour,  at  what  distance  from  the  starting  point  will  it  overtake 
the  first  ? 

60.  A  car  weighing  22  cwt.  is  running  on  a  level  road  at  12  miles  an  hour 
round  a  curve  of  40  feet  radius,  measured  to  the  centre  of  gravity  of  the  car. 
What  horizontal  force  perpendicular  to  the  direction  of  motion  must  be  exerted 
by  tie  ground  on  the  wheels  of  the  car? 

Assuming  that  the  grip  of  the  outer  wheels  is  sufficient  to  prevent  skidding, 
find  at  what  speed  the  inner  wheels  will  begin  to  lift  off  the  ground.  The 
width  of  the  wheel  base  is  3  feet  9  inches  and  the  centre  of  gravity  is  3  feet 
above  the  ground. 

61.  What  do  you  understand  by  the  principle  of  conservation  of  momen- 
tum ?    Shew  how  this  principle  is  based  on  the  laws  of  momentum. 

A  railway  truck,  weighing  10  tons,  moving  with  a  velocity  of  4  miles  per 
hour,  impinges  on  another  truck,  weighing  8  tons,  and  moving  in  the  opposite 
direction  with  a  velocity  of  1  mile  per  hour.  When  impact  occurs  the  two 
trucks  are  automatically  coupled  together.  Find  the  velocity  of  the  trucks 

after  impact,  and  the  number  of  foot-tons  of  energy  lost. 

62.  A  cage  is  being  pulled  up  a  shaft  with  a  velocity  of  10  feet  per  second. 
A  block  of  stone,  weighing  50  lbs.,  is  dropped  down  the  shaft  and  after  falling 
through  60  feet  it  meets  the  cage.  The  cage  continues  to  ascend  without 
change  of  velocity,  carrying  the  stone  with  it.  What  is  the  impulse  of  the 
blow  between  the  stone  and  the  cage  ? 

If  the  motion  of  the  stone  is  completely  reversed  in  half  a'  second,  what  is 
the  average  value  of  the  thrust  between  the  cage  and  the  stone  ? 

63.  On  a  railway  line  there  are  two  points  of  observation  1  mile  apart. 

A  train  passes  the  first  point  at  30  miles  an  hour,  and  after  an  interval  of 
90  seconds  it  passes  the  second  point  at  the  same  speed.  What  is  its  average 

speed  between  the  points  ?  If  the  train  had  uniform  acceleration  during  the 
first  half  of  the  interval  and  uniform  retardation  during  the  second  half, 

what  was  the  highest  speed  reached  during  the  interval,  and  what  was  the 
value  of  the  acceleration  ? 
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64.    Simultaneous  values  of  speed  and  time  for  a  train  are  given  jn  the 
table  below. 

Find  graphically  the  acceleration  in  feet  per  second  per  second  at  the  end 
of  the  1st  minute  and  at  the  end  of  the  5th  minute. 

Find  also  the  distance  passed  over  in  attaining  a  speed  of  55  miles  pei hour. 

Time 
sees. 0 

0 

50 100 150 
200 250 300 350 400 

450 

500 • 
Velocity 
m.p.  h. 24-6 36-3 43-7 

48-3 
51-3 53-5 

55-1 56-2 
57-6 57-9 65.  In  a  steam  engine  mechanism,  AB  represents  the  crank,  BC  the  con- 

necting rod,  and  T  is  the  point  of  intersection  of  the  connecting  rod  and  the 
line  through  A  perpendicular  to  line  of  stroke.  Shew  that  if  M  is  the  couple 
on  the  crank,  the  thrust  on  the  crosshead  in  the  direction  of  motion  is  given 
M  M 

by  ̂ ^  ,  and  the  normal  thrust  on  the  guides  of  the  crosshead  is  given  by  ̂  . 

Shew,  also,  that  the  angular  velocity  ratio  of  the  connecting  rod  and  crank  is 

equal  to  ̂ ^ . 

66.  An  electrically  propelled  car  is  fitted  with  a  recording  accelerometer, 
the  drum  of  which  is  driven  by  gearing  connected  to  the  wheels.  The  record 
traced  in  starting  the  car  from  rest  is  shewn  in  fig.  134.  Find  the  velocity  of 

the  car  after  5  seconds  and  the  horse-power  per  ton  which  is  then  being 
expended  in  acceleration. 

V 
\ 

k 

o \ 
N^ 

• ^ 
® 

^  ° 
10      20       30      40       50      60      70      80 

Distance  travelled  by  car.  feet 

Fig.  134. 

90     TOO 
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V- 

67.  If  a  train's  resistance  to  motion  under  certain  conditions  be  4  +  ——  lbs. I  JUL) 

per  ton,  when  the  speed  is  V  miles  per  hour,  shew  that  the  horse-power  ex- 

pended in  hauling  a  train  of  200  tons  is  2-13  V  4-0-0026  V^.  Plot  a  curve 
shewing  the  relation  between  horse-power  and  speed  between  10  and  40  miles 
per  hour. 

68.  A  truck  moving  with  a  given  velocity  impinges  on  another  truck  of 
the  same  mass  which  is  at  rest.  Shew  that,  if  there  is  no  loss  of  energy  due 
to  the  impact,  the  first  truck  will  be  left  at  rest,  and  the  second  truck  will 
move  off  with  the  velocity  originally  possessed  by  the  first  truck, 

60.  Shew  how  the  distance  passed  over  in  a  given  time  by  a  body  whose 
velocity  continually  varies  with  the  time,  may  be  estimated. 

A  body  starts  from  rest  with  a  constant  acceleration  of  1  foot  per  second 
per  second ;  after  a  time  the  body  has  a  constant  retardation  and  finally 
comes  to  rest  10  miles  from  its  starting  point.  Find  the  maximum  velocity 
and  the  value  of  the  retardation  if  the  total  time  taken  is  16  minutes. 

70.  A  cage  weighing  4000  lbs.  is  wound  up  a  shaft.  The  relation  between 
the  tension,  T  lbs.  wt.  in  the  rope,  and  the  distance,  x  feet,  which  the  cage 
has  risen,  is  given  in  the  following  table : 

X 0 10 20 30 40 50 60 

70 80 
T 6000 5900 5660 5200 

• 
4500 3500 2650 

2130 2000 

Plot  a  curve  for  tension  and  distance,  and  find  the  work  done  during  the 
80  feet  given,  and  the  kinetic  energy  of  the  cage  at  the  end  of  that  distance. 

At  what  point  is  the  kinetic  energy  greatest,  and  what  is  then  its  value  ? 

71.  A  door  I  feet  wide,  of  mass  m  lbs.,  swinging  to  with  an  angular  velocity 
w  radians  per  second  is  brought  to  rest  in  an  angle  d  radians  by  a  buffer  stop 

which  applies  a  uniform  force  P  at  a  distance  ̂   from  the  axis  of  the  hinges. 

Find  the  magnitude  of  P,  and  the  hinge  reactions  normal  to  the  door,  when 
the  buffer  is  placed  in  a  horizontal  plane  half  way  up. 

72.  A  motor-car  has  30  inch  wheels,  and  weighs  2000  lbs.  When  travelling 

at  18  miles  per  hour,  a  total  braking  force  of  500  lbs.  is  applied  at  a  radius 
of  6  inches  from  the  centre  of  the  wheels. 

Determine  the  time  taken  to  reduce  the  speed  to  10  miles  per  hour,  and 
the  ratio  between  the  distances  travelled  while  the  speed  waa  being  reduced 
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from  18  to  10  miles  per  hour,  and  from  10  miles  per  hour  till  the  car  stopped. 

In  practice,  what  other  factors  would  have  to  be  considered  in  making  these 
calculations? 

73.  A  4  inch  shaft  is  to  be  turned  in  a  lathe.  If  the  cutting  speed  is  not 
to  exceed  40  feet  per  minute  what  is  the  maximum  speed  at  which  the  shaft 

may  be  rotated.  The  speed  of  the  tool  along  the  shaft  is  so  small  that  it  may 
be  neglected. 

74.  The  stroke  of  a  steam  engine  is  24  inches,  the  cylinder  diameter  is 
14  inches.  Steam  is  admitted  to  the  cylinder  at  100  lbs.  per  sq.  in.  pressure, 
during  a  quarter  of  the  stroke,  and  then  expands,  the  expansion  curve  being 

the  hyperbola  pt;  =  constant.  On  the  other  side  of  the  piston  there  is  a 
constant  pressure  of  16  lbs.  per  sq.  inch.  Plot  a  curve  shewing  the  effective 

steam  thi'ust  on  the  piston  during  the  stroke,  and  find  how  much  work  is 
done  by  the  steam  on  the  piston  in  one  stroke. 

75.  A  string  15  feet  long  has  its  ends  fixed  to  two  points  at  the  same  level 
and  10  feet  apart.  A  smooth  ring  is  threaded  on  the  string  and  is  initially 
held  vertically  below  one  fij:ed  end  of  the  string  by  a  horizontal  force.  If  the 
ring  is  suddenly  released  shew  that  it  will  move  in  an  elliptical  path.  Find 

its  velocity  when  it  has  travelled  a  horizontal  distance  (1)  of  2-5  feet,  (2)  of 
5  feet. 

76.  A  flywheel  weighing  10,000  lbs.  is  suspended  from  a  pair  of  centres 
entering  conical  holes  in  the  rim,  so  that  it  can  swing  in  a  vertical  plane. 
The  liue  joining  the  centres  is  parallel  to,  and  distant  3  feet  from,  the  axis 

of  the  wheel.  The  period  of  a  complete  swing  is  2-5  seconds.  Find  the  radius 
of  gyration  of  the  wheel,  and  the  energy  stored  in  it,  when  running  at  250 
revolutions  per  minute. 

77.  Two  vessels  start  from  the  same  point:  one  steams  due  north  at 

10  miles  per  hour,  the  other  steams  north-east  at  such  a  speed  as  always  to 
keep  due  east  of  the  first.  Find  the  velocity  of  the  second  vessel,  and  the 
magnitude  and  direction  of  the  relative  velocity  of  the  two. 

At  one  hour  from  the  start  both  vessels  change  their  course  and  steam  due 
west,  maintaining  the  same  speeds  as  before.  After  what  time  will  the  faster 
vessel  overtake  the  slower,  and  how  far  has  each  steamed  in  the  time? 

78.  The  crank  of  a  petrol  engine  is  3  inches  and  the  connecting  rod 
12  inches  long.  The  engine  runs  at  720  revolutions  per  minute.  Find 

graphically  the  velocity  of  the  piston  when  it  has  performed  (a)  one-quarter 
of  its  out-stroke,  {b)  one-quarter  of  its  in-stroke. 

Find  also  the  angular  velocity  of  the  connecting  rod  for  each  of  the  two 

positions. 
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79.  A  pendulum  bob,  weighing  8  ounces,  rotates  uniformly  in  a  hori- 
zontal circle  at  the  end  of  a  light  string  1  foot  long,  the  other  end  of  the 

string  being  fixed.  If  it  make  120  revolutions  per  minute,  what  is  the  tension 
in  the  string,  and  what  angle  does  the  string  make  with  the  vertical? 

At  what  angle  and  with  what  speed  does  the  pendulum  rotate  if  the  tension 
in  the  string  is  equal  to  four  times  the  weight  of  the  bob  ? 

80.  A  lifting  tackle  consists  of  two  blocks:  the  upper  one  is  fixed  and 
contains  two  sheaves,  the  lower  one  contains  one  sheave  and  is  fast  to  one 
end  of  the  rope.    Sketch  the  tackle  and  find  its  velocity  ratio. 

The  following  table  gives  the  pull  required  to  lift  various  loads : 

Load  in  lbs. 
28 

54 

112 168 224 280 336 

Pull  in  lbs. 
30 

38 
64 

87 109 
130 

150 

Find  the  efficiency  of  the  tackle  for  each  of  the  given  loads,  and  draw 
graphs  of  pull  and  efficiency  on  a  load  base. 

81.  A  hose  is  directed  perpendicularly  against  a  wall  and  delivers  10  cubic 
feet  of  water  per  minute  through  a  nozzle  of  1  inch  diameter,  the  water 
having  no  rebound  from  the  wall.   Determine  the  pressure  on  the  wall. 

82.  A  practical  formula  used  for  estimating  the  tractive  force  F,  at  the 

PLD2 

rails  in  lbs.  for  a  two  cylinder  locomotive  is,  F : W ,  where  W  is  the  dia- 

meter of  the  driving  wheels  in  inches,  P  is  the  mean  pressure  of  steam  in  the 

cylinders  in  lbs.  per  sq.  inch,  D  is  the  diameter  of  the  cylinders  in  inches, 
and  L  is  the  length  of  stroke  in  inches.    Derive  this  formula. 

83.  A  jet  of  water  impinges  with  velocity  v  feet  per  second  on  a  serie?  of 
plane  vanes  set  round  the  circumference  of  a  wheel  and  moving  with  velocity 
u  feet  per  second.  Shew  that  for  each  square  inch  of  section  of  the  jet  the 

horse-power  communicated  to  the  wheel  is  very  nearly  2*45  {v  -  u)v  .ii.  10~^, 
and  find  an  expression  for  the  efficiency  of  the  jet. 

84.  The  slide-valve  of  a  horizontal  steam  engine  derives  its  motion  from 
a  point  P  in  a  link  AB,  where  AP  =  ̂ AB.  The  horizontal  displacements  of 
A  and  B  for  any  crank  position  are  given  by  the  equations 

a;i  =  2-5sin(^-f27°), 

a;2  =  2-6sin(6'  +  150°). 
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Shew  that  the  resulting  motion  of  the  valve  may  be  expressed  by  the 

equation 
x  =  asm  (d  +  e) 

and  find  the  values  of  a  and  e. 

86.  A  flywheel  possesses  50  foot-tons  of  kinetic  energy  when  rotating  at 
200  revolutions  per  minute.  What  is  its  moment  of  inertia,  the  unit  being 

1  lb.  at  1  foot  radius?  How  many  foot-lbs.  of  work  must  be  done  to  increase 
its  speed  from  200  to  202  revolutions  per  minute  ? 

86.  A  steam  engine  has  a  crank  9  inches  long  and  a  connecting  rod 

36  inches  long.  At  the  instant  when  the  crank  is  at  right  angles  to  the  con- 
necting rod  there  is  a  thrust  of  600  lbs.  wt.  in  the  piston  rod.  Find  the 

turning  moment  on  the  crank,  and  the  force  on  the  crosshead  guides. 

On  the  return  stroke  there  is  a  pull  of  600  lbs.  wt.  in  the  piston  rod  at  the 

instant  when  the  crank  makes  180°  with  the  position  given  above.  Find  in 
this  position  the  turning  moment,  and  the  force  on  the  guides. 

87.  Three  masses  A,  B,  and  C  are  bolted  to  the  spokes  of  a  horizontal 

wheel,  the  centre  of  which  is  O.  The  masses  are  3,  5,  and  4  lbs.  respectively  ; 

AOB  =  60°,  BOC  =  90° ;  OA  =:  24  inches,  OB  =  20  inches,  OC  =  18  inches.  Find 
the  magnitude  and  angular  position  of  a  mass  D  which  will  produce  no  re- 

sultant transverse  thrust  on  the  shaft,  taking  OD  =  15  inches, 

88.  The  speed  and  power  trials  of  a  cruiser  gave  the  following  results: 

Speed  in  knots 14 
18 

22 
26 

Horse-power 
2600 6000 11,800 23,000 

Find  the  value  of  the  resistance  overcome  at  each  speed,  and  plot  curves 

of  horse-power  and  resistance  relative  to  speed. 

If  the  vessel  weigh  5000  tons,  what  additional  horse-power  is  required  to 
give  the  vessel  an  acceleration  of  1  knot  per  minute  when  the  speed  is  22  knots? 
Take  a  knot  as  100  feet  per  minute. 

89.  A  flywheel  and  shaft,  the  moment  of  inertia  of  which  is  10  lbs.  ft.'^, 
are  mounted  on  ball  bearings  so  that  friction  may  be  neglected.  The  diameter 
of  the  shaft  is  2  inches,  and  a  string  wrapped  round  it  carries  a  weight  of 
10  lbs.  The  shaft  is  horizontal,  and  the  string  is  so  connected  to  it  that,  when 
completely  unwound  by  the  rotation  of  the  shaft,  it  winds  on  again.  The  weight 
is  supported  4  feet  from  the  ground,  with  the  string  just  taut,  and  is  then  let  go. 
Find  how  high  the  weight  will  be  raised  after  its  first  contact  with  the  ground. 
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90.  The  mechanism  of  a  small  machine  for  punching  holes  in  paper  is 
shewn  in  fig.  135,  the  links  being  connected  by  pin  joints,  and  the  punch 
constrained  to  move  vertically.  Find,  graphically,  the  velocity  ratio  of  the 
points  C  and  B. 

Estimate  the  vertical  force  required  at  C  to  produce  a  force  on  the  punch 
of  50  lbs.  (a)  when  ABC  is  in  the  position  shewn,  (b)  when  ABC  is  perpen- 

dicular to  OA. 

0A  =  1",  AB^I",  AC=i3i",  and  O  is  f"  from  the  axis  of  the  punch. 
C 

  
O 

///////////// 

Fig.  135. 

01.  Two  equal  toothed  wheels  A  and  B  are  connected  by  a  light  link  C. 
The  wheels  are  rotating  with  an  angular  velocity  w,  with  the  link  C  fixed, 
when  suddenly  the  link  C  is  released  and  the  wheel  A  is  fixed.  Shew  that, 
if  the  inertia  of  the  link  be  neglected,  it  will  begin  to  rotate  with  an  angular 

velocity  r-yra   5^ »  where  k  is  the  radius  of  gyration  of  either  wheel  about  its 

centre,  and  a  is  the  effective  radius  of  the  wheels. 

What  is  the  impulsive  couple  which  will  be  required  on  wheel  A  ? 

92.  A  pendulum  consists  of  a  thin  rod  weighing  2  ounces  and  a  uniform 
disc  of  3  inches  diameter  weighing  ̂   lb.  The  rod  which  is  3  feet  long  extends 
to  the  centre  of  the  disc.  Find  the  periodic  time  of  swing  of  the  pendulum 
when  suspended  from  the  free  end. 
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93.  It  is  required  to  transmit  25  horse-power  from  a  pulley  of  30  inches 
diameter  running  at  350  revolutions  per  minute,  by  means  of  a  belt.  Find 
the  required  width  of  the  belt,  having  given  the  ratios  of  the  tensions  on  the 
two  sides  to  be  equal  to  2,  the  thickness  |  inch,  and  the  allowable  stress 
500  lbs.  per  sq.  inch. 

94.  A  smooth  wire,  bent  into  the  form  of  a  circle  of  radius  r,  is  rotating 
above  its  vertical  diameter  with  angular  velocity  w.  If  a  mass  is  strung  on 
the  wire,  shew  that  it  will  be  in  equilibrium  when  its  angular  distance,  0, 
from  the  vertical  diameter  is  such  that 

ru}'^cosd  =  g. 

The  mass  is  given  a  small  displacement  from  its  position  of  equilibrium, 

shew  that  it  will  oscillate  about  this  position  and  that  the  period  of  oscilla- 
tion is 

2«- 

w  sin 
 0 ' 

95.  For  the  purpose  of  conveying  small  packages  from  one  room  to 
another  vertically  above  it,  the  package  is  enclosed  in  a  small  cylinder  which 
forms  a  piston  for  a  vertical  tube  passing  from  the  one  room  to  the  other. 
The  cylinder  being  fitted  into  the  lower  end,  the  upper  portion  of  the  tube  is 
connected  to  a  reservoir  in  which  a  vacuum  of  5  lbs.  per  sq.  inch  by  gauge 
is  maintained.  The  cylinder  and  contents  weigh  1  lb.  and  the  diameter  is 
1^  inches.  Taking  the  friction  between  the  tube  and  the  cylinder  to  be  1  lb. 
find  the  time  for  the  cylinder  to  travel  vertically  upwards  40  feet  from  the 
starting  point,  and  also  find  the  velocity  of  arrival.  The  vacuum  pressure 
may  be  assumed  to  remain  constant,  and  the  effect  of  the  inertia  of  the  air 
below  the  cylinder  may  be  neglected. 

96.  A  mass  vi,  whose  centre  of  gravity  is  at  a  point  B,  is  supported  by 
two  equal  links  AB,  CB,  which  are  hinged  to  a  vertical  spindle  at  A  and  C. 
Find  the  forces  in  the  links  AB,  CB 

(1)  when  the  system  is  at  rest ; 

2fl (2)  when  it  is  rotating  about  AC  with  angular  velocity  <a  and  w^  =  7r7» ; 
4:0 

(3)  when  it  is  rotating  about  AC  with  angular  velocity  w  and  ̂ 2=  Ap  • 

97.  A  steam  engine  is  suddenly  brought  up  by  an  unyielding  obstacle 
interposed  in  the  line  of  motion  of  the  piston  rod ;  find  the  impulse  for  a 
given  position  of  the  crank,  taking  into  account  the  momentum  of  a  flywheel 
on  the  crank  shaft,  and  of  a  piston  and  connecting  rod,  but  neglecting  the 
angular  motion  of  the  connecting  rod,  that  is  to  say  treating  it  as  of  infinite 
length. 
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98.   The  displacement  s,  in  feet,  of  a  piston  is  given  in  terms  of  the  time 

t,  in  seconds  by 
s  =  0-5  cos  Airt  +  0-25  cos  8irt. 

If  the  piston  weighs  20  lbs.  find  the  force  in  the  piston  rod  required  for 
accelerating  at  the  following  times,  0,  ̂ V,  ̂ ,  I  second. 

Find  also  the  kinetic  energy  given  out  or  taken  in  by  the  piston  (1)  during 

the  first  half-stroke,  (2)  during  the  middle  half-stroke. 

90.  A  particle  is  suspended  by  three  equal  strings  of  length  a  from  three 
points  forming  an  equilateral  triangle  of  side  2b  in  a  horizontal  plane.  If  one 
string  be  cut,  shew  that  the  tension  of  each  of  the  others  is  instantaneously 

changed  in  the  ratio 3aP-ib^ 

lOO.  A  wheel  of  24  inches  diameter,  and  having  a  radius  of  gyration  of 
10  inches,  rolls  along  the  ground  and  meets  a  step  6  inches  high.  Shew  that 

if  the  speed  of  the  wheel  is  less  than  6*18  feet  per  second  it  will  not  be  able 
to  lift  itself  on  to  the  step.  Assume  that  the  wheel  is  inelastic,  and  that  there 

is  no  slipping  at  its  point  of  contact  with  the  square  edge  of  the  step. 

I 
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CHAPTER  I.    (Pages  17—19) 

1.  554  yards;  15° 45' west  of  north;  533  yards;  150  yards. 
2.  1-732;  1-5;  0-866.  3.   331  lbs.;  73° 34' north  of  east. 
4.   (a)  2-1,  106^°;  (b)  5-06,  329-4°;  (c)  7-97,  118°.  5.   6-1  feet. 
6.   60;  66.  7.   2340;  390.  8.   37,600;  76,800;  3600;  1300. 

0.  -;  --^.  lO.    t1-13;   ±1-13.  11.   2-15  square  inches. 3         Js 

CHAPTER  11.    (Pages  51—56) 

1.  (1)    8-97  metres  per  second.  (2)  26-84  metres  per  second. 
(3)  2796  metres  per  second. 

2.  1056  feet  per  second.  3.   47-3  feet. 
6.  131  feet  per  second ;  150  feet  per  second  ;  zero. 

7.  34-4  feet  per  second;    10-47  radians  per  second;  420  revolutions  per 
minute. 

8.  4400  feet  per  minute  ;  840  revolutions  per  minute  ;  88  radians  per  second. 

O.   3000  revolutions  per  second.  lO.    2-62  feet  per  second. 
13.  1-05  miles;    22-8  miles  per  hour;    1*65  feet  per  second  per  second; 

0-42  foot  per  second  per  second ;  2*08  feet  per  second  per  second. 
14.  a  =  261-8  cos  25^  +  43-5  cos  50«.  18.   21-2  feet. 

19.    2055  feet  per  second  ;  411  feet  per  second.  20.    51°  20';  88°. 
21.  3-88  feet  per  second;  52°  12'  north  of  east;  0-554  foot  per  second  per 

second. 

22.  66-7  feet  per  second  per  second. 
23.  12-2  minutes  ;  151°  to  the  direction  of  current  ; 

7-1         „  123° 
24.  44  seconds;  2499  feet.         25.    23-2  knots;  4-12  hours;  7*07  sea  miles. 
26.  35  miles  per  hour ;  inclined  at  82°  to  OB. 
27.  Greater  for  ̂   =  45°. 

28.  200  revolutions  per  minute ;  127  feet  per  second  inclined  at  150°  and 
30°  with  the  direction  of  motion  of  the  train. 

29.  0-655  foot  per  second  ;  1*635  feet  per  second.     30.    10  seconds;  50  feet. 
31.  6-72  inches  ;  0-69  second  ;   0-81  second  ;   80  feet  per  minute  ;    63-2  feet 

per  minute. 
32.  324  feet  per  minute. 

L.  E.  D.  16 
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CHAPTER  III.    (Pages  83—87) 

1.  222  lbs.  wt.;  f  foot  per  second  per  second  ;  510  feet. 

2.  72,100  poundals  ;  lO^"  dynes.  3.    1-305  tons  wt. 
5.  2000  lbs.  wt.;  2125  lbs.  wt.;  1688  lbs.  wt. 

6.  1674  lbs.  wt, ;  3'86  feet  per  second  per  second. 
7.  11-4  seconds  ;  167  feet ;  13-1  seconds  ;  192  feet. 
8.  0-354  lb.  wt.  inclined  at  45°  to  the  original  direction  of  motion. 
9.  98  lbs.  wt.;  170  lbs.  wt.  lO.    1-77  feet  per  second. 

12.  116  lbs.  wt.                   13.    92  seconds.  14.   ̂   ton  wt. 

15.  550  lbs.  wt. ;  505  lbs.  wt.             16.   138-6  seconds;  10,000  feet. 
17.  1-06  feet  per  second  per  second  upwards. 

l'8.  1700  feet  per  second  ;  750  lbs.  wt.  19.   96  square  feet. 
20.  4-97  lbs.  wt.  21.    0*0122  second  ;  2-73  feet  per  second. 
22.  1-14  feet  per  second  per  second. 
23.  35,21-2,  -5,  -21-2,  -25  tons  wt.  25.    6-6  inches. 
26.  0-517  tons.    12-85  tons-feet-seconds  units.  27.   950  lbs.  wt. 

28.  1'19  seconds;  286,000  absolute  c.g.s.  units;  18-1  centimetres. 
29.  46  absolute  f.p.s.  units  ;  3-83  feet  per  second. 
30.  (A)  13  feet  per  second  ;  9  feet  per  second.    (B)  7  feet  per  second ;  11  feet 

per  second. 

CHAPTER  IV.    (Pages  107—109) 

1.  14-7  lbs.  feet.       2.   0-025  feet  per  second  per  second ;  14-45  revolutions. 

{4(M-fm)-hW}M         (4M-f-W)(M4-m)    ,  8M2-f8Mr/i-f  W  (2Mj-7n) 

^ •        4 M  -f-  2m  -f-  W      ̂  '   ~^lvr+2?M  +  W     ̂  '     7"    4 M  -f  2m  +  W  ^' 
4.  32  feet  per  second  ;  128  radians  per  second  ;  26-9  lbs.  feet-. 
6.  0-155^  foot  per  second  per  second. 
6.  12  lbs.  feet;  7-4  lbs.  feet;  720  revolutions. 
7.  40-03  lbs.  feet.  9.   0-186  lbs.  feet. 

10.  50  absolute  f.p.s.  units ;  0*032  absolute  f.p.s.  units. 
11.  8660  lbs.  feet^.  15.    1  foot  3  inches  from  the  hinge. 
16.   318  lbs.  feet.  17.   20  revolutions  per  minute. 

18.   83-3  lbs.  feet2.  19.    2*65  lbs.  feet^.  20.    3360  lbs.  feet^. 

21.    (1)  6-53  lbs.  feet^.     (2)  298  lbs.  feet^. 
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5. 
7. 
9. 

lO. 
11. 
14. 

CHAPTER  V.    (Pages  124—127) « 

86-8  revolutions  per  minute.  3.    \l^   '--i    ;  3'58  feet. 

Pull  of  12-5  lbs.  wt.  at  A  and  push  of  12-5  lbs.  wt.  at  B. 
„       26-8         „  „         pull  of     1-7 

92-3  revolutions  per  minute. 
10-36  miles  per  hour  inclined  at    75°  to  the  road. 
20  „  „  „         150° 
38-6  „  „  „         165° 

7-7  lbs. ;  0-4  lbs.  wt.  6.    6-2°  ;  6^  inches. 
847  lbs.  wt.;  24-4  miles  per  hour.  8.   25-8°;  767  lbs.  wt.  per  ton. 
1182  lbs.  wt. 

270  revolutions  per  minute;  266  revolutions  per  minute. 

473  revolutions  per  minute.        12.  50*4  tons  wt.;  9^  inches  ;  63  tons  wt. 
5-23  tons  wt.  15.   454  tons  wt.    2-8  inches.  16.    2-83  inches. 

7. 

8. 
lO. 
12. 
13. 
14. 

16. 

CHAPTER  VI.    (Pages  154—161) 

6800  ft. -tons  ;  60-8  horse-power ;  31-7  horse-power. 
346ft.-tons;  1970  strokes ;  471  lbs.  wt. 

40  lbs.  per  square  inch  ;  8200  foot-lbs.     4,   169  feet ;  1*07  horse-power. 
0-62  horse-power ;  60  feet  per  minute ;  120  feet  per  minute ;  1*65  horse- 

power. 
12-1  ft.-tons  ;  0-269  ton  wt. 

6-3  feet  per  second ;  538  feet.      9.  8-75  horse-power ;  47*5  miles  per  hour. 
6-6  inches.  11.    16-7  miles  per  hour  ;  9-32  ft.-tons. 
9-6  ft.-tons;  3-3  ft.-tons;  5-2  horse-power. 
17  feet  per  second  ;  2-25  tons  wt. ;  2-52  tons  wt. 
1880  feet  per  second.  15.    12-5  lbs.  per  ton  ;  333  horse-power. 

17. 
19. 
21. 
22. 
23. 

Distance 
feet 0 10 

20 30 
40 50 

Speed 
feet  per  second 

0 6 8 

9-2 
9-9 

10-3 13-4  ft.-tons. 

5-06  feet  per  second;  33-6°.  18,    3-26  feet  per  second, 
2-45  indies.  20.    99-75  per  cent.,  3125  lbs.  wt. 
9*8  inches  ;  5*15  feet  per  second. 
41-7  tons  wt.;  1785  horse-power. 
5867  abs.  ft.-ton-sec.  units;  13,400  ft.-tons;  293  feet;  45-8  tons  wt. 
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24.  0-294  foot  per  second  per  second ;  0'22  foot  per  second  per  second. 
25.  18 '9  horse-power.  26.    1-33  horse-ppwer  ;  0-43  horse-power. 
27.  4  radians  per  second;  1250  lbs.  wt.;  3-98  radians  per  second. 
28.  3300  ft. -lbs.;  289  f t.-tons  ;  3-76  seconds. 
29.  8160  lbs.  ft.;  1^  per  cent.  30.    105-5  ft.-tons  ;  57-5  per  cent. 
31.  A,  56-5  revolutions  per  minute;  B,  443-5  revolutions  per  minute; 

0-155  second  ;  326  lbs.  wt.  sec.  units. 

CHAPTER  VIII.    (Pages  183—186) 

2.    2-09  seconds  ;   1%  lb.  wt.  3.    4-32  seconds. 
4.    Gtt  feet  per  second;  665  lbs.  wt.;  337-5  lbs.  wt.;  1-65  seconds. 
7.    2-048  feet  per  second;  2-052  feet  per  second.  8.    1-57  seconds. 
10.    31  ft.-tons.  11.    0-179  second  ;  1-3  inches;  3  feet  per  second. 
12.    1-4  seconds.  13.    30-4  seconds.  14.    224  lbs.  wt. 

17.    1-57  seconds  ;  1-59  seconds.  18.    12-3  tons  wt. 

CHAPTER  IX.    (Pages  210—218) 

1.  9|  inches.  2.   0-57  horse-power. 
3.  0-28  horse-power-hour ;  44-2  lbs.  wt.  4.    5-07  horse-power. 
5.  39 '4  feet  per  minute  ;  8-38  lbs.  feet.       6.  61*5  per  cent.;  3|  tons  ;  f  ton. 
7.  0-215  ;  0-45  ton  wt.  8.    (1)  57  lbs.  wt.    (2)  203  lbs.  wt. 
9.  23-6  horse-power ;  1-4  horse-power  ;  722-5  lbs.  wt. ;  147  lbs.  wt. 

10.  P  =  18-4  W -I- 12-6,  where  P-the  effort  in  lbs.,  and  W  =  the  load  in  tons. 
11.  2533  lbs.  feet ;  1733  lbs.  feet ;  328  lbs.  feet. 

12.  221  revolutions  per  minute;  30-2  horse-power.       13.  41-1  horse-power. 
14.  0-547  foot  per  second;  136-5  absolute  f.p.s.  units;  33-6  ft.-lbs. 
15.  6-55  tons  wt.;  673  tons. 
16.  35-5  lbs.  per  square  inch;  190  ft.-tons;  12-9  horse-power. 
17.  13-7  tons  wt.;  17  knots.        18.   21 -8  ft.-tons;  106  revolutions  per  minute. 
19.  18*5  horse-power;  3-3  horse-power.  20.    86  per  cent. 
21.  85-5  lbs.  feet;  301  lbs.  feet;  258  lbs.  wt. ;  30-2  miles  per  hour. 
22.  14-5  revolutions.  23.    1-82  horse-power  ;  37-8  per  cent. 
24.  318  revolutions  per  minute  ;  0*74  horse-power. 

25.  100  per  cent,  (nearly) ;  75-6  per  cent.      *  26.   9-6  horse-power. 
27.  1-25  feet  per  second  per  second. 
28.  (1)  .9  sin  a.     (2)  ̂ ^g  sin  a.     (3)  f  l^f  sin  a. 

29.  48-5  per  cent. ;  55  per  cent.;  31-6  horse-power. 
30.  Ill  ft.-lbs.;  37  ft.-lbs.;  74  ft.-lbs. 
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